Image-based Unknown Malware Classification with Few-Shot Learning Models

被引:17
|
作者
Trung Kien Tran [1 ]
Sato, Hiroshi [1 ]
Kubo, Masao [1 ]
机构
[1] Natl Def Acad, Dept Comp Sci, Yokosuka, Kanagawa, Japan
关键词
malware classification; few-shot learning; Matching Networks; Prototypical Networks; MalImg; Microsoft Malware Classification;
D O I
10.1109/CANDARW.2019.00075
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowing malware types in every malware attacks is very helpful to the administrators to have proper defense policies for their system. It must be a massive benefit for the organization as well as the social if the automatic protection systems could themselves detect, classify an existence of new malware types in the whole network system with a few malware samples. This feature helps to prevent the spreading of malware as soon as any damage is caused to the networks. An approach introduced in this paper takes advantage of One-shot/few-shot learning algorithms in solving the malware classification problems by using some well-known models such as Matching Networks, Prototypical Networks. To demonstrate an efficiency of the approach, we run the experiments on the two malware datasets (namely, MalImg and Microsoft Malware Classification Challenge), and both experiments all give us very high accuracies. We confirm that if applying models correctly from the machine learning area could bring excellent performance compared to the other traditional methods, open a new area of malware research.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 50 条
  • [31] Partner-Assisted Learning for Few-Shot Image Classification
    Ma, Jiawei
    Xie, Hanchen
    Han, Guangxing
    Chang, Shih-Fu
    Galstyan, Aram
    Abd-Almageed, Wael
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10553 - 10562
  • [32] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [33] Deep transformer and few-shot learning for hyperspectral image classification
    Ran, Qiong
    Zhou, Yonghao
    Hong, Danfeng
    Bi, Meiqiao
    Ni, Li
    Li, Xuan
    Ahmad, Muhammad
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1323 - 1336
  • [34] Deep Transfer Learning for Few-Shot SAR Image Classification
    Rostami, Mohammad
    Kolouri, Soheil
    Eaton, Eric
    Kim, Kyungnam
    REMOTE SENSING, 2019, 11 (11)
  • [35] Laplacian Regularized Variational Few-Shot Learning for Image Classification
    Zahid, Yumna
    Tahir, Muhammad Atif
    Han, Jungong
    Shen, Qiang
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 105 - 116
  • [36] A Deep few-shot learning algorithm for hyperspectral image classification
    Liu B.
    Zuo X.
    Tan X.
    Yu A.
    Guo W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (10): : 1331 - 1342
  • [37] Transfer Learning for Image-based Malware Classification
    Bhodia, Niket
    Prajapati, Pratikkumar
    Di Troia, Fabio
    Stamp, Mark
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2019, : 719 - 726
  • [38] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [39] Dual class representation learning for few-shot image classification
    Singh, Pravendra
    Mazumder, Pratik
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [40] MPPCANet: A feedforward learning strategy for few-shot image classification
    Song, Yu
    Chen, Changsheng
    PATTERN RECOGNITION, 2021, 113