O-Operators on Lie ∞-algebras with respect to Lie ∞-actions

被引:4
|
作者
Caseiro, Raquel [1 ]
da Costa, Joana Nunes [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
Lie infinity-algebra; O-operator; Maurer Cartan element;
D O I
10.1080/00927872.2022.2025819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define O-operators on a Lie infinity-algebra E with respect to an action of E on another Lie infinity-algebra and we characterize them as Maurer-Cartan elements of a certain Lie infinity-algebra obtained by Voronov's higher derived brackets construction. The Lie infinity-algebra that controls the deformation of O-operators with respect to a fixed action is determined.
引用
收藏
页码:3079 / 3101
页数:23
相关论文
共 50 条
  • [31] Projection operators for Lie algebras, superalgebras, and quantum algebras
    Smirnov, YF
    LATIN-AMERICAN SCHOOL OF PHYSICS XXX ELAF: GROUP THEORY AND ITS APPLICATIONS, 1996, (365): : 99 - 116
  • [32] Lax operators algebras and gradings on semisimple Lie algebras
    O. K. Sheinman
    Doklady Mathematics, 2015, 91 : 160 - 162
  • [33] ADJOINT OPERATORS IN LIE-ALGEBRAS AND THE CLASSIFICATION OF SIMPLE FLEXIBLE LIE-ADMISSIBLE ALGEBRAS
    OKUBO, S
    MYUNG, HC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 264 (02) : 459 - 472
  • [34] Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras
    Hou, Shuai
    Sheng, Yunhe
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (14)
  • [35] PROPER AFFINE ACTIONS ON SEMISIMPLE LIE ALGEBRAS
    Smilga, Ilia
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) : 785 - 831
  • [36] ACTIONS IN THE CATEGORY OF PRECROSSED MODULES IN LIE ALGEBRAS
    Casas, J. M.
    Datuashvili, T.
    Ladra, M.
    Uslu, E. O.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 2962 - 2982
  • [37] Galois Groups and Group Actions on Lie Algebras
    Agore, A. L.
    Militaru, G.
    JOURNAL OF LIE THEORY, 2018, 28 (04) : 1165 - 1188
  • [38] LIE-ALGEBRAS OF DIFFERENTIAL-OPERATORS AND LIE-ALGEBRAIC POTENTIALS
    KAMRAN, N
    OLVER, PJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (02) : 342 - 356
  • [39] On Solvable Lie Algebras of White Noise Operators
    Bock, Wolfgang
    Canama, Janeth
    Petalcorin, Gaudencio
    SYMMETRY-BASEL, 2022, 14 (11):
  • [40] LIE DERIVATIONS ON THE ALGEBRAS OF LOCALLY MEASURABLE OPERATORS
    Chilin, Vladimir
    Juraev, Ilkhom
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2018, 24 (01): : 16 - 26