A VARIABLE SEPARATION TECHNIQUE FOR FAST BAYESIAN OPERATIONAL MODAL ANALYSIS IN THE FREQUENCY DOMAIN

被引:0
|
作者
Yan, Wangji [1 ]
Katafygiotis, Lambros [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Structural dynamics; ambient modal analysis; bayesian analysis; uncertainty quantification; wireless sensor network; FFT METHOD; IDENTIFICATION; POSTERIOR;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Modal parameters (natural frequencies, damping ratios and mode shapes) have widespread applications in various fields such as structural health monitoring and structural control. Recently, ambient modal analysis using measured response only has aroused increasing interest in real applications in that they can be implemented in a much more efficient manner. In this study, the Bayesian statistical framework which provides a rigorous way for obtaining optimal values as well as their uncertainties is employed for structural operational modal analysis in the frequency domain for the cases of separated modes and closely spaced modes, respectively. To address the computational challenges of conventional Bayesian spectral density approach, a variable separation technique is presented in this study to completely decouple the interaction between spectrum variables (e.g., frequency, damping ratio as well as the amplitude of modal excitation and prediction error) and spatial variables (e.g., mode shape). As a result, the spectrum variables can be identified by using the sum of auto-spectral density in the first stage, while the spatial variables can be estimated by using the cross spectral density matrix in a second stage. The dimension involved in solving the most probable values as well as taking the inversion of the Hessian matrix is reduced significantly after employing the proposed strategy. Also, there is no need to fuse the identified spectrum variables from different setups together since the proposed method is able to incorporate information contained in all measured dofs. The accuracy of the methodology are verified by a numerical example and experimental studies which are conducted by employing a torsional shear building model installed with advanced wireless sensor node platforms.
引用
收藏
页码:1881 / 1891
页数:11
相关论文
共 50 条
  • [21] Bayesian operational modal analysis with buried modes
    Zhu, Yi-Chen
    Au, Siu-Kui
    Brownjohn, James Mark William
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 121 : 246 - 263
  • [22] A frequency-spatial domain decomposition (FSDD) method for operational modal analysis
    Zhang, Lingmi
    Wang, Tong
    Tamura, Yukio
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (05) : 1227 - 1239
  • [23] AI-driven blind source separation for fast operational modal analysis of structures
    Hernandez-Gonzalez, Israel Alejandro
    Garcia-Macias, Enrique
    Costante, Gabriele
    Ubertini, Filippo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 211
  • [24] A Novel Modal Technique for Time and Frequency Domain Analysis of Waveguide Components
    Kulas, Lukasz
    Kowalczyk, Piotr
    Mrozowski, Michal
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (01) : 7 - 9
  • [25] Bayesian operational modal analysis: Theory, computation, practice
    Au, Siu-Kui
    Zhang, Feng-Liang
    Ni, Yan-Chun
    COMPUTERS & STRUCTURES, 2013, 126 : 3 - 14
  • [26] Hierarchical Bayesian operational modal analysis: Theory and computations
    Sedehi, Omid
    Katafygiotis, Lambros S.
    Papadimitriou, Costas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 140
  • [27] Bayesian operational modal analysis considering environmental effect
    Zhu, Yi-Chen
    Wu, Shan-Hao
    Xiong, Wen
    Zhang, Li-Kui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 223
  • [28] A frequency and spatial domain decomposition method for operational strain modal analysis and its application
    Wang, T.
    Celik, O.
    Catbas, F. N.
    Zhang, L. M.
    ENGINEERING STRUCTURES, 2016, 114 : 104 - 112
  • [29] Removal of non-stationary harmonics for operational modal analysis in time and frequency domain
    Daems, Pieter-Jan
    Peeters, Cedric
    Guillaume, Patrick
    Helsen, Jan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [30] OPERATIONAL MODAL ANALYSIS OF STRUCTURES USING A NEW TIME-FREQUENCY DOMAIN APPROACH
    Tarinejad, Reza
    Damadipour, Majid
    6TH IOMAC: INTERNATIONAL OPERATIONAL MODAL ANALYSIS CONFERENCE PROCEEDINGS, 2015, : 343 - 355