Optimal control in pharmacokinetic drug administration

被引:0
|
作者
Hungerbuehler, Norbert [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
关键词
optimal control; Laplace transform; pharmacokinetics; drug administration;
D O I
10.3934/mbe.2022249
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a two-box model for the administration of a therapeutic substance and discuss two scenarios: First, the substance should have an optimal therapeutic concentration in the central compartment (typically blood) and be degraded in an organ, the peripheral compartment (e.g., the liver). In the other scenario, the concentration in the peripheral compartment should be optimized, with the blood serving only as a means of transport. In either case the corresponding optimal control problem is to determine a dosing schedule, i.e., how to administer the substance as a function u of time to the central compartment so that the concentration of the drug in the central or in the peripheral compartment remains as closely as possible at its optimal therapeutic level. We solve the optimal control problem for the central compartment explicitly by using the calculus of variations and the Laplace transform. We briefly discuss the effect of the approximation of the Dirac delta distribution by a bolus. The optimal control function u for the central compartment satisfies automatically the condition u >= 0. But for the peripheral compartment one has to solve an optimal control problem with the non-linear constraint u >= 0. This problem does not seem to be widely studied in the current literature in the context of pharmacokinetics. We discuss this question and propose two approximate solutions which are easy to compute. Finally we use Pontryagin's Minimum Principle to deduce the exact solution for the peripheral compartment.
引用
收藏
页码:5312 / 5328
页数:17
相关论文
共 50 条
  • [21] Optimal control applied to drug administration in cancer chemotherapy: The case of several toxicity constraints
    Matveev, AS
    Savkin, AV
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4851 - 4856
  • [22] Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts
    Struys, M. M. R. F.
    Sahinovic, M.
    Lichtenbelt, B. J.
    Vereecke, H. E. M.
    Absalom, A. R.
    BRITISH JOURNAL OF ANAESTHESIA, 2011, 107 (01) : 38 - 47
  • [23] PHARMACOKINETIC RATIONALE FOR PERITONEAL DRUG ADMINISTRATION IN TREATMENT OF OVARIAN CANCER
    DEDRICK, RL
    MYERS, CE
    BUNGAY, PM
    DEVITA, VT
    CANCER TREATMENT REPORTS, 1978, 62 (01): : 1 - 11
  • [24] APPLICATION OF OPTIMAL THEORY TO DRUG ADMINISTRATION SCHEDULE
    KUSUOKA, H
    INOUE, M
    INADA, H
    HORI, M
    MATSUO, H
    ABE, H
    KAJIYA, F
    PHYSICS IN MEDICINE AND BIOLOGY, 1980, 25 (05): : 968 - 968
  • [25] Optimal Methodology Is Important for Optimal Pharmacokinetic Studies, Therapeutic Drug Monitoring and Patient Care
    Jelliffe, Roger
    CLINICAL PHARMACOKINETICS, 2015, 54 (09) : 887 - 892
  • [26] Optimal Methodology Is Important for Optimal Pharmacokinetic Studies, Therapeutic Drug Monitoring and Patient Care
    Roger Jelliffe
    Clinical Pharmacokinetics, 2015, 54 : 887 - 892
  • [27] ALGORITHM FOR OPTIMAL LINEAR MODEL-BASED CONTROL WITH APPLICATION TO PHARMACOKINETIC MODEL-DRIVEN DRUG DELIVERY
    JACOBS, JR
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1990, 37 (01) : 107 - 109
  • [28] Why Collecting Pharmacokinetic Information After Intravenous Drug Administration Is Important
    Hinderling, Peter H.
    Papoian, Thomas
    CLINICAL PHARMACOLOGY IN DRUG DEVELOPMENT, 2020, 9 (02): : 146 - 150
  • [29] Optimizing Multiple Drug Administration from Depot by Applying Pharmacokinetic Concepts
    Prodanova K.
    International Journal Bioautomation, 2020, 24 (04) : 337 - 348
  • [30] Pharmacokinetic problems in peritoneal drug administration: Tissue penetration and surface exposure
    Dedrick, RL
    Flessner, MF
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1997, 89 (07): : 480 - 487