Fluid-structure interaction for aeroelastic applications

被引:163
|
作者
Kamakoti, R [1 ]
Shyy, W [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
关键词
D O I
10.1016/j.paerosci.2005.01.001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
the interaction between a flexible structure and the surrounding fluid gives rise to a variety of phenomena with applications in many areas, such as, stability analysis of airplane wings, turbomachinery design, design of bridges, and the flow of blood through arteries. Studying these phenomena requires modeling of both fluid and structure. Many approaches in computational aeroelasticity seek to synthesize independent computational approaches for the aerodynamic and the structural dynamic subsystems. This strategy is known to be fraught with complications associated with the interaction between the two simulation modules. The task is to choosing the appropriate models for fluid and structure based on the application, and to develop an efficient interface to couple the two models. In the present article, we review the recent advancements in the field of fluid-structure interaction, with specific attention to aeroelastic applications. One of the key aspects to developing a robust coupled aeroelastic model is the presence of an efficient moving grid technique to account for structural deformations. Several such techniques are reviewed in this paper. Also, the time scales associated with fluid-structure interaction problems can be very different; hence, appropriate time stepping strategies and/or sub-cycling procedures within the individual field need to be devised. The flutter predictions performed on an AGARD 445.6 wing at different Mach numbers are selected to highlight the state-of-the-art computational and modeling issues. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 558
页数:24
相关论文
共 50 条
  • [31] ACOUSTIC FLUID-STRUCTURE INTERACTION
    Gaul, Lothar
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 9, 2014,
  • [32] Fluid-structure interaction - Preface
    Ohayon, R
    Kvamsdal, T
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 1913 - 1913
  • [33] On a fluid-structure interaction problem
    Flori, F
    Orenga, P
    TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 293 - 305
  • [34] On the fluid-structure interaction in the cochlea
    Rapson, Michael J.
    Hamilton, Tara J.
    Tapson, Jonathan C.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (01): : 284 - 300
  • [35] FLUID-STRUCTURE INTERACTION : Foreword
    Walters, Trey
    Lakshmiraju, Murthy
    Inaba, Kazuaki
    Jo, Jong Chull
    Neuhaus, Thorsten
    Tijsseling, Arris S.
    Hassan, M.
    Mureithi, N.W.
    Mohany, A.
    Gross, David
    Geng, Jihui
    Janzen, Victor
    American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 2022, 1
  • [36] Fluid-structure interaction for the people!
    Battista, N. A.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2020, 60 : E13 - E13
  • [37] Modeling of fluid-structure interaction
    Dowell, EH
    Hall, KC
    ANNUAL REVIEW OF FLUID MECHANICS, 2001, 33 : 445 - 490
  • [38] FLUID-STRUCTURE INTERACTION AND ADINA
    ZILLIACUS, S
    COMPUTERS & STRUCTURES, 1983, 17 (5-6) : 763 - 773
  • [39] Biomedical fluid mechanics and fluid-structure interaction
    Bazilevs, Yuri
    Takizawa, Kenji
    Tezduyar, Tayfun E.
    COMPUTATIONAL MECHANICS, 2014, 54 (04) : 893 - 893
  • [40] Special Issue on Engineering Applications of Fluid-Structure Interaction Research - Preface
    de Langre, E
    Ziada, S
    JOURNAL OF FLUIDS AND STRUCTURES, 2002, 16 (07) : 841 - 842