Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature

被引:25
|
作者
Chakraborty, G. [1 ]
Gupta, K. [1 ]
Meikap, A. K. [1 ]
Babu, R. [2 ]
Blau, W. J. [2 ]
机构
[1] Natl Inst Technol, Dept Phys, Durgapur 713209, W Bengal, India
[2] Univ Dublin Trinity Coll, Dept Phys, Dublin 2, Ireland
关键词
AMORPHOUS-SEMICONDUCTORS; OPTICAL-PROPERTIES; AC CONDUCTION; POLYMER; FIBERS; FILMS; MAGNETORESISTANCE; CHALCOGENIDE; POLYANILINE; DISPERSION;
D O I
10.1063/1.3544204
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dc and ac electrical transport property of polyvinyl alcohol-multiwall carbon nanotubes composites has been investigated within a temperature range 77 <= T <= 300 K and in the frequency range 20 Hz-1 MHz in presence as well as in absence of a transverse magnetic field up to 1 T. The dc conductivity follows variable range hopping model. The magnetoconductivity of the samples changes a sign from positive to negative with an increase in temperature which can be interpreted by the dominancy of the quantum interference effect over the wave function shrinkage effect. The ac conductivity follows a power law whereas the temperature dependence of frequency exponent s can be explained by correlated barrier hopping model. The dielectric behavior of the samples has been governed by the grain and grain boundary resistance and capacitance. The ac conductivity reduces with the application of magnetic field. Although the theoretical model to explain it, is still lacking, we may conclude that this is due to the increase in grain and grain boundary resistance by the application of magnetic field. (C) 2011 American Institute of Physics. [doi:10.1063/1.3544204]
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The effect of multiwall carbon nanotubes on the properties of room temperature-vulcanized silicone adhesives
    Goldberg, G.
    Dodiuk, H.
    Kenig, S.
    Cohen, R.
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2014, 28 (17) : 1661 - 1676
  • [22] Electronic transport properties of multiwall carbon nanotubes/yttria- stabilized zirconia composites
    Shi, Sui-Lin
    Liang, Ji
    Journal of Applied Physics, 2007, 101 (02):
  • [23] Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites
    Shi, Sui-Lin
    Liang, Ji
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)
  • [24] Functionalization of multiwall carbon nanotubes: Properties of nanotubes-epoxy composites
    Breton, Y
    Delpeux, S
    Benoit, R
    Salvetat, JP
    Sinturel, C
    Beguin, F
    Bonnamy, S
    Desarmot, G
    Boufendi, L
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 387 : 359 - 364
  • [25] Functionalization of multiwall carbon nanotubes: Properties of nanotubes-epoxy composites
    Breton, Y.
    Delpeux, S.
    Benoit, R.
    Salvetat, J.P.
    Sinturel, C.
    Beguin, F.
    Bonnamy, S.
    Desarmot, G.
    Boufendi, L.
    Molecular Crystals and Liquid Crystals, 2002, 387 (01) : 135 - 140
  • [26] Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor
    Maity, Debasis
    Rajavel, Krishnamoorthy
    Kumar, Ramasamy Thangavelu Rajendra
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 261 : 297 - 306
  • [27] Signatures of phase coherence in the low-temperature transport properties of multiwall carbon nanotubes
    Zhang, ZF
    Chandrasekhar, V
    PHYSICAL REVIEW B, 2006, 73 (07)
  • [28] Composites of polyvinyl alcohol and carbon nanotubes decorated with silver nanoparticles
    Weiwei Zhang
    Wenli Li
    Jianjun Wang
    Chuanxiang Qin
    Lixing Dai
    Fibers and Polymers, 2010, 11 : 1132 - 1136
  • [29] Composites of Polyvinyl Alcohol and Carbon Nanotubes Decorated with Silver Nanoparticles
    Zhang, Weiwei
    Li, Wenli
    Wang, Jianjun
    Qin, Chuanxiang
    Dai, Lixing
    FIBERS AND POLYMERS, 2010, 11 (08) : 1132 - 1136
  • [30] The effect of polyvinyl alcohol functionalized multiwall carbon nanotubes on the improvement of the compressive strength of concrete
    Malikov, Elvin Y.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (10) : 781 - 785