Comparing a class of dynamic model-based reinforcement learning schemes for handoff prioritization in mobile communication networks

被引:5
|
作者
El-Alfy, El-Sayed M. [1 ]
Yao, Yu-Dong [2 ]
机构
[1] King Fand Univ Petr & Minerals, Coll Comp Sci & Engn, Dhahran 31261, Saudi Arabia
[2] Stevens Inst Technol, Dept Elect & Comp Engn, WISELAB, Hoboken, NJ 07030 USA
关键词
Resource management; Handoff prioritization; Cellular systems; Mobile communication networks; Reinforcement learning; Semi-Markov decision process; CALL ADMISSION CONTROL; CHANNEL ASSIGNMENT; RESERVATION SCHEME; ALLOCATION; SYSTEM;
D O I
10.1016/j.eswa.2011.01.082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents and compares three model-based reinforcement learning schemes for admission policy with handoff prioritization in mobile communication networks. The goal is to reduce the handoff failures while making efficient use of the wireless network resources. A performance measure is formed as a weighted linear function of the blocking probability of new connection requests and the handoff failure probability. Then, the problem is formulated as a semi-Markov decision process with an average cost criterion and a simulation-based learning algorithm is developed to approximate the optimal control policy. The proposed schemes are driven by a dynamic model estimated simultaneously while learning the control policy using samples generated from direct interactions with the network. Extensive simulations are provided to assess and compare their effectiveness of the algorithm under a variety of traffic conditions with some well-known policies. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8730 / 8737
页数:8
相关论文
共 50 条
  • [41] A comparison of direct and model-based reinforcement learning
    Atkeson, CG
    Santamaria, JC
    1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 3557 - 3564
  • [42] Model-based Reinforcement Learning and the Eluder Dimension
    Osband, Ian
    Van Roy, Benjamin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [43] Model-based reinforcement learning in a complex domain
    Kalyanakrishnan, Shivaram
    Stone, Peter
    Liu, Yaxin
    ROBOCUP 2007: ROBOT SOCCER WORLD CUP XI, 2008, 5001 : 171 - 183
  • [44] Lipschitz Continuity in Model-based Reinforcement Learning
    Asadi, Kavosh
    Misra, Dipendra
    Littman, Michael L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [45] A Contraction Approach to Model-based Reinforcement Learning
    Fan, Ting-Han
    Ramadge, Peter J.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 325 - +
  • [46] Model-Based Reinforcement Learning For Robot Control
    Li, Xiang
    Shang, Weiwei
    Cong, Shuang
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2020), 2020, : 300 - 305
  • [47] Consistency of Fuzzy Model-Based Reinforcement Learning
    Busoniu, Lucian
    Ernst, Damien
    De Schutter, Bart
    Babuska, Robert
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 518 - +
  • [48] Abstraction Selection in Model-Based Reinforcement Learning
    Jiang, Nan
    Kulesza, Alex
    Singh, Satinder
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 179 - 188
  • [49] Asynchronous Methods for Model-Based Reinforcement Learning
    Zhang, Yunzhi
    Clavera, Ignasi
    Tsai, Boren
    Abbeel, Pieter
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [50] Online Constrained Model-based Reinforcement Learning
    van Niekerk, Benjamin
    Damianou, Andreas
    Rosman, Benjamin
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,