We treat linear partial differential equations of first order with distributional coefficients naturally related to physical conservation laws in the spirit of our preceding papers (which concern ordinary differential equations): the solutions are consistent with the classical ones. Under compatibility conditions we prove uniqueness and existence results. As an example we consider the problem u(t) + delta (t)u(x) = 0, u(x, - 1) = h(x) (h is an element of C-2(R) is given); our theory grants that the unique solution in C-2(R-2) circle plus D-l' (R-2) is u(x, t) = h(x) - h ' (0)delta (x, t) and this has a physical meaning (D-l' (R-2) is the space of distributions with discrete support and delta is the Dirac measure at (0,0)). (C) 2001 Academic Press.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
CNR, Ist Applicaz Calcolo M Picone, Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Bertsch, Michiel
Smarrazzo, Flavia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campus Biomed Roma, Via Alvaro del Portillo 21, I-00128 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Smarrazzo, Flavia
Terracina, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Terracina, Andrea
Tesei, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Applicaz Calcolo M Picone, Rome, Italy
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy