Exchange-bias in amorphous ferromagnetic and polycrystalline antiferromagnetic bilayers: Structural study and micromagnetic modeling

被引:12
|
作者
Kohn, A. [1 ,2 ]
Dean, J. [3 ]
Kovacs, A. [4 ]
Zeltser, A. [5 ]
Carey, M. J. [5 ]
Geiger, D. [6 ]
Hrkac, G. [3 ]
Schrefl, T. [7 ]
Allwood, D. [3 ]
机构
[1] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel
[3] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England
[4] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[5] Hitachi Global Storage Technol, San Jose, CA 95193 USA
[6] Tech Univ Dresden, Inst Struct Phys, Triebenberg Lab, D-01062 Dresden, Germany
[7] St Poelten Univ Appl Sci, A-3100 St Polten, Austria
基金
英国工程与自然科学研究理事会;
关键词
LORENTZ MICROSCOPY; DOMAIN-WALLS; ENERGY-LOSS; THIN-FILMS; DIFFRACTION; SYSTEMS; FIELD;
D O I
10.1063/1.3559261
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the role of the structure of antiferromagnetic polycrystalline metallic films in determining the magnetic properties of an exchange-coupled amorphous ferromagnetic layer. The bilayers are sputter-deposited, highly textured {111} Ir22Mn78 and Co65.5Fe14.5B20 thin films. We focus on structural characterization of Ir22Mn78 as a function of layer thickness in the range having the strongest influence over the exchange-bias field and training effect. We have used transmission electron microscopy to characterize defects in the form of interface steps and roughness, interdiffusion, twin-and grain-boundaries. Such defects can result in uncompensated magnetic spins in the antiferromagnet, which then contribute to exchange-bias. These experimental results form the basis of a general model, which uses finite element micromagnetic simulations. The model incorporates the experimental structural parameters of the bilayer by implementing a surface integral technique that allows numerical calculations to solve the transition from an amorphous to a granular structure. As a result, a detailed calculation of the underlying magnetic structure within the antiferromagnetic material is achieved. These calculations are in good agreement with micromagnetic imaging using Lorentz transmission electron microscopy and the macro-magnetic properties of these bilayers. (C) 2011 American Institute of Physics. [doi:10.1063/1.3559261]
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Contribution of the Peierls Potential to the Exchange Bias and Coercivity of Ferromagnetic-Antiferromagnetic Bilayers
    Moritz, J.
    Bacher, P.
    Dieny, B.
    PHYSICAL REVIEW LETTERS, 2014, 112 (08)
  • [42] Effect of applied stress on exchange bias in ferromagnetic/antiferromagnetic bilayers and the phenomenon of the jump
    Bai Yu-Hao
    Yun Guo-Hong
    Narsu, B.
    ACTA PHYSICA SINICA, 2009, 58 (07) : 4962 - 4969
  • [43] Role of antiferromagnetic bulk exchange coupling on exchange-bias propagation
    Chi, Xiaodan
    Ma, Fenghua
    Luo, An
    Du, An
    Wang, Jinren
    Hu, Yong
    PHYSICS LETTERS A, 2015, 379 (42) : 2772 - 2776
  • [44] Bimodal distribution of blocking temperature for exchange-bias ferromagnetic/antiferromagnetic bilayers: a granular Monte Carlo study with less stable magnetic regions spread over the interface
    Lhoutellier, G.
    Ledue, D.
    Patte, R.
    Barbe, F.
    Dieny, B.
    Baltz, V.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (11)
  • [45] Ferromagnetic resonance and exchange anisotropy in ferromagnetic/antiferromagnetic bilayers
    Hu, JG
    Jin, GJ
    Ma, YQ
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (04) : 2180 - 2185
  • [46] Mossbauer effect study of correlation between structure and exchange-bias effect in ferromagnetic Fe/antiferromagnetic FeSn2 bilayers -: art. no. 063513
    Kuncser, VE
    Stromberg, F
    Acet, M
    Keune, W
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
  • [47] Observation of pure inverse spin Hall effect in ferromagnetic metals via ferromagnetic/antiferromagnetic exchange-bias structures
    Wu, H.
    Wan, C. H.
    Yuan, Z. H.
    Zhang, X.
    Jiang, J.
    Zhang, Q. T.
    Wen, Z. C.
    Han, X. F.
    PHYSICAL REVIEW B, 2015, 92 (05)
  • [48] Exchange-bias training effect in TbFe/GdFe: Micromagnetic mechanism
    Hauet, T.
    Mangin, S.
    McCord, J.
    Montaigne, F.
    Fullerton, Eric E.
    PHYSICAL REVIEW B, 2007, 76 (14)
  • [49] On the controversial measurements of the exchange-bias field in magnetic bilayers
    Rodríguez-Suárez, RL
    Leao, LHV
    Agular, FM
    Rezende, SM
    Azevedo, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1212 - 1214
  • [50] Exchange bias effect in cylindrical nanowires with ferromagnetic core and polycrystalline antiferromagnetic shell
    Patsopoulos, A.
    Kechrakos, D.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 465 : 678 - 684