Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses

被引:37
|
作者
Ahmed, Aqeel [1 ]
Villinger, Saskia [1 ]
Gohlke, Holger [1 ,2 ]
机构
[1] Goethe Univ Frankfurt, Dept Biol Sci, Mol Bioinformat Grp, Frankfurt, Germany
[2] Univ Dusseldorf, Dept Math & Nat Sci, Dusseldorf, Germany
关键词
RCNMA; ENM; intrinsic motion; conformational change; evolution; FREQUENCY NORMAL-MODES; INDUCED CONFORMATIONAL-CHANGE; ELECTRON-DENSITY MAPS; HINGE-BENDING MOTION; FUNCTIONAL TRANSITIONS; HARMONIC DYNAMICS; ENERGY LANDSCAPE; SINGLE-PARAMETER; ATOMIC-STRUCTURE; FOLDING FUNNELS;
D O I
10.1002/prot.22841
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A large-scale comparison of essential dynamics (ED) modes from molecular dynamic simulations and normal modes from coarse-grained normal mode methods (CGNM) was performed on a dataset of 335 proteins. As CGNM methods, the elastic network model (ENM) and the rigid cluster normal mode analysis (RCNMA) were used. Low-frequency normal modes from ENM correlate very well with ED modes in terms of directions of motions and relative amplitudes of motions. Notably, a similar performance was found if normal modes from RCNMA were used, despite a higher level of coarse graining. On average, the space spanned by the first quarter of ENM modes describes 84% of the space spanned by the five ED modes. Furthermore, no prominent differences for ED and CGNM modes among different protein structure classes (CATH classification) were found. This demonstrates the general potential of CGNM approaches for describing intrinsic motions of proteins with little computational cost. For selected cases, CGNM modes were found to be more robust among proteins that have the same topology or are of the same homologous superfamily than ED modes. In view of recent evidence regarding evolutionary conservation of vibrational dynamics, this suggests that ED modes, in some cases, might not be representative of the underlying dynamics that are characteristic of a whole family, probably due to insufficient sampling of some of the family members by MD.
引用
收藏
页码:3341 / 3352
页数:12
相关论文
共 50 条
  • [21] Ultra coarse-grained molecular dynamics simulations of lipid bilayers
    Carrillo, Jan Michael
    Katsaras, John
    Sumpter, Bobby
    Ashkar, Rana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [22] Assembly of lipoproteins revealed by coarse-grained molecular dynamics simulations
    Shih, Amy Y.
    Freddolino, Peter L.
    Arkhipov, Anton
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2007, : 250A - 250A
  • [23] A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose
    Wohlert, Jakob
    Berglund, Lars A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (03) : 753 - 760
  • [24] Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum
    Arkhipov, Anton
    Freddolino, Peter L.
    Imada, Katsumi
    Namba, Keiichi
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2006, 91 (12) : 4589 - 4597
  • [25] Coarse-Grained Molecular Dynamics Simulations of Membrane Trehalose Interactions
    Kapla, Jon
    Stevensson, Baltzar
    Maliniak, Arnold
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (36): : 9621 - 9631
  • [26] Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
    Bulacu, Monica
    Goga, Nicolae
    Zhao, Wei
    Rossi, Giulia
    Monticelli, Luca
    Periole, Xavier
    Tieleman, D. Peter
    Marrink, Siewert J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3282 - 3292
  • [27] Coarse-grained molecular dynamics simulations of photoswitchable assembly and disassembly
    Zheng, Xiaoyan
    Wang, Dong
    Shuai, Zhigang
    NANOSCALE, 2013, 5 (09) : 3681 - 3689
  • [28] Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks
    Cieplak, Marek
    Thompson, Damien
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (23):
  • [29] Coarse-grained molecular dynamics simulations of ionic polymer networks
    T. E. Dirama
    V. Varshney
    K. L. Anderson
    J. A. Shumaker
    J. A. Johnson
    Mechanics of Time-Dependent Materials, 2008, 12 : 205 - 220
  • [30] Novel Coarse-Grained Model for Molecular Dynamics Simulations of DNA
    Karolak, Aleksandra
    van der Vaart, Arjan
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 804A - 804A