Source apportionment of hourly-resolved ambient volatile organic compounds: In fluence of temporal resolution

被引:17
|
作者
Li, Zhiyuan [1 ]
Ho, Kin-Fai [1 ,2 ]
Yim, Steve Hung Lam [1 ,3 ,4 ]
机构
[1] Chinese Univ Hong Kong, Inst Environm Energy & Sustainabil, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Jockey Club Sch Publ Hlth & Primary Care, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Stanley Ho Big Data Decis Analyt Res Ctr, Shatin, Hong Kong, Peoples R China
关键词
Hourly measurements; PMF'; VOC sources; Diurnal variation; Temporal resolution; PEARL RIVER DELTA; REPLACING CATALYTIC-CONVERTERS; PHOTOCHEMICAL OZONE FORMATION; COMPOUNDS VOCS; HONG-KONG; URBAN SITE; FUELED VEHICLES; AIR-POLLUTION; CHINA; PM2.5;
D O I
10.1016/j.scitotenv.2020.138243
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High temporal-resolution VOC concentration data can provide detailed and important temporal variations of VOC species and emission sources, which is not possible when using coarse temporal-resolution data. In this study, we utilized the positivematrix factorization (PMF) model to conduct source apportionment of hourly concentrations of nineteen VOC species and CO measured at the Mong Kok air quality monitoring station, operated by the Hong Kong Environmental Protection Department, from January 2013 to December 2014. The PMF analysis of the hourly dataset (PMF_Hourly) identified five sources, including liquefied petroleum gas (LPG) (contribution of 45%), gasoline exhaust (21%), combustion (20%), biogenic emission (9%), and paint solvents (6%). The diurnal patterns of VOC emissions from identified sources are likely to be affected by the strength of emissions, variation of the planetary boundary layer height, and photochemical reactions. In addition, the PMF analyses of hourly and 24-hour averaged data of the hourly-resolved data (PMF_Hourly and PMF_Daily) were generally comparable, but the time series of VOC emissions from PMF_Hourly could not be well captured by PMF_Daily for two local VOC sources of gasoline exhaust and LPG. This study highlights the benefit of high temporalresolutionmeasurement data in apportioning VOC sources, hence providing critical information on VOCemission sources (e.g., diurnal variations) for controlling VOC emissions effectively. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [42] Source apportionment of volatile organic compounds (VOCs) in aircraft cabins
    Yang, X. (xyang@mail.tsinghua.edu.cn), 1600, Elsevier Ltd (81):
  • [43] Source apportionment of volatile organic compounds (VOCs) in aircraft cabins
    Wang, Chao
    Yang, Xudong
    Guan, Jun
    Li, Zheng
    Gap, Kai
    BUILDING AND ENVIRONMENT, 2014, 81 : 1 - 6
  • [44] Ambient volatile organic compounds in the Seoul metropolitan area of South Korea: Chemical reactivity, risks and source apportionment
    Eun, Da-Mee
    Han, Yun-Sung
    Nam, Ilkwon
    Chang, Yuwoon
    Lee, Sepyo
    Park, Jeong-Hoo
    Gong, Sung Yong
    Youn, Jong-Sang
    ENVIRONMENTAL RESEARCH, 2024, 251
  • [45] Spatial gradients and source apportionment of volatile organic compounds near roadways
    Olson, David A.
    Hammond, Davyda M.
    Seila, Robert L.
    Burke, Janet M.
    Norris, Gary A.
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (35) : 5647 - 5653
  • [46] Characteristics and source apportionment of atmospheric volatile organic compounds in Beijing, China
    Wei, Wei
    Ren, Yunting
    Yang, Gan
    Cheng, Shuiyuan
    Han, Lihui
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2019, 191 (12)
  • [47] Source apportionment of measured volatile organic compounds in Maricopa County, Arizona
    Pramod, Luke
    Fraser, Matthew P.
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2023, 73 (10) : 786 - 796
  • [48] Characteristics and source apportionment of atmospheric volatile organic compounds in Beijing, China
    Wei Wei
    Yunting Ren
    Gan Yang
    Shuiyuan Cheng
    Lihui Han
    Environmental Monitoring and Assessment, 2019, 191
  • [49] Source apportionment and health risk assessment of indoor volatile organic compounds
    Bai, Li
    Dai, Huageng
    Wang, Jun
    Li, Guangming
    INDOOR AND BUILT ENVIRONMENT, 2022, 31 (06) : 1564 - 1576
  • [50] Characterization of Ambient Volatile Organic Compounds, Source Apportionment, and the Ozone-NOx-VOC Sensitivities in Liucheng County, Guangxi
    Wu Y.
    Mo Z.-Y.
    Wu Q.-Q.
    Lu J.-H.
    Mao J.-Y.
    Chen X.-M.
    Su S.-L.
    Qin W.
    Liu H.-L.
    Wei M.
    Huanjing Kexue/Environmental Science, 2023, 44 (01): : 75 - 84