Experimental Research of Selected Lattice Structures Developed with 3D Printing Technology

被引:15
|
作者
Bogusz, Pawel [1 ]
Poplawski, Arkadiusz [1 ]
Stankiewicz, Michal [1 ]
Kowalski, Bartlomiej [1 ]
机构
[1] Mil Univ Technol, Fac Mech Engn, PL-00908 Warsaw, Poland
关键词
3D topologies; lattice structures; 3D printing; additive manufacturing technique; experimental research; energy absorbing test; compression curves; CELLULAR STRUCTURES; MULTISCALE ANALYSIS; BEHAVIOR; STIFFNESS; RATIO;
D O I
10.3390/ma15010378
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents the results of the experimental research of 3D structures developed with an SLA additive technique using Durable Resin V2. The aim of this paper is to evaluate and compare the compression curves, deformation process and energy-absorption parameters of the topologies with different characteristics. The structures were subjected to a quasi-static axial compression test. Five different topologies of lattice structures were studied and compared. In the initial stage of the research, the geometric accuracy of the printed structures was analysed through measurement of the diameter of the beam elements at several selected locations. Compression curves and the stress history at the minimum cross-section of each topology were determined. Energy absorption parameters, including absorbed energy (AE) and specific absorbed energy (SAE), were calculated from the compression curves. Based on the analysis of the photographic material, the failure mode was analysed, and the efficiency of the topologies was compared.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] 3D PRINTING STRUCTURES THAT EXHIBIT TORSIONS
    Noh, Kyoung-Seok
    Seo, Hae-Won
    Lee, Yong-Gu
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 501 - 506
  • [42] Making Porous Structures 3D printing
    不详
    CURRENT SCIENCE, 2021, 120 (10): : 1553 - 1553
  • [43] Design optimization of PLA lattice in 3D printing
    Jain, R.
    Gupta, N.
    MATERIALS TODAY-PROCEEDINGS, 2022, 59 : 1577 - 1583
  • [44] Reinforcements in 3D printing concrete structures
    Alonso-Canon, Sara
    Blanco-Fernandez, Elena
    Castro-Fresno, Daniel
    Yoris-Nobile, Adrian, I
    Castanon-Jano, Laura
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2022, 23 (01)
  • [45] 3D Printing multifunctionality: structures with electronics
    David Espalin
    Danny W. Muse
    Eric MacDonald
    Ryan B. Wicker
    The International Journal of Advanced Manufacturing Technology, 2014, 72 : 963 - 978
  • [46] 3D Printing in Pharmaceutical Technology - A Review
    Ponni, Ravikumar Tamil
    Swamivelmanickam, Mahalingam
    Sivakrishnan, Sivagnanam
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL INVESTIGATION, 2020, 10 (01) : 8 - 12
  • [47] 3D printing technology for textiles and fashion
    Dip, Tanvir Mahady
    Emu, Ayesha Siddika
    Nafiz, Md Nafiul Hassan
    Kundu, Puja
    Rakhi, Hasnatur Rahman
    Sayam, Abdullah
    Akhtarujjman, Md
    Shoaib, Mohammad
    Ahmed, Md Shakil
    Ushno, Swimi Tabassum
    Ibn Asheque, Abdullah
    Hasnat, Enamul
    Uddin, Mohammad Abbas
    Sayem, Abu Sadat Muhammad
    TEXTILE PROGRESS, 2020, 52 (04) : 167 - 260
  • [48] Application of 3D printing technology in brachytherapy
    Natanasabapathi, Gopishankar
    Saini, Surendra K.
    Mittal, Apoorva
    Dhanabalan, R.
    Subramani, V
    Sharma, Daya Nand
    JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2024, 20 (06) : 1677 - 1686
  • [49] A Review of 3D Food Printing Technology
    Pitayachaval, Paphakorn
    Sanklong, Nattawut
    Thongrak, Anantapoom
    2018 6TH ASIA CONFERENCE ON MECHANICAL AND MATERIALS ENGINEERING (ACMME 2018), 2018, 213
  • [50] Surface technology in times of 3D printing
    Käsinger, H.
    Galvanotechnik, 2019, 110 (09): : 1706 - 1709