Multiple Imputation of Missing Phenotype Data for QTL Mapping

被引:9
|
作者
Bobb, Jennifer F. [1 ]
Scharfstein, Daniel O. [1 ]
Daniels, Michael J. [2 ]
Collins, Francis S. [3 ]
Kelada, Samir [3 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Univ Florida, Gainesville, FL 32611 USA
[3] NHGRI, NIH, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
multiple imputation; missing data; quantitative trait loci; QUANTITATIVE TRAIT LOCI; AIRWAY RESPONSIVENESS; COLLABORATIVE CROSS; SYSTEMS GENETICS; INCOMPLETE DATA; MOUSE; MICE; PLETHYSMOGRAPHY; FRAMEWORK; RESOURCE;
D O I
10.2202/1544-6115.1676
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Missing phenotype data can be a major hurdle to mapping quantitative trait loci (QTL). Though in many cases experiments may be designed to minimize the occurrence of missing data, it is often unavoidable in practice; thus, statistical methods to account for missing data are needed. In this paper we describe an approach for conjoining multiple imputation and QTL mapping. Methods are applied to map genes associated with increased breathing effort in mice after lung inflammation due to allergen challenge in developing lines of the Collaborative Cross, a new mouse genetics resource. Missing data poses a particular challenge in this study because the desired phenotype summary to be mapped is a function of incompletely observed dose-response curves. Comparison of the multiple imputation approach to two naive approaches for handling missing data suggest that these simpler methods may yield poor results: ignoring missing data through a complete case analysis may lead to incorrect conclusions, while using a last observation carried forward procedure, which does not account for uncertainty in the imputed values, may lead to anti-conservative inference. The proposed approach is widely applicable to other studies with missing phenotype data.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] MULTIPLE IMPUTATION: A POSSIBLE SOLUTION TO THE PROBLEM OF MISSING DATA
    Sergeant, J. C.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : 45 - 46
  • [22] Multiple Imputation for Missing Data Using Genetic Programming
    Cao Truong Tran
    Zhang, Mengjie
    Andreae, Peter
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 583 - 590
  • [23] Application of Multiple Imputation Method for Missing Data Estimation
    Ser, Gazel
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2012, 25 (04): : 869 - 873
  • [24] Multiple Imputation for Missing Data in Life Cycle Inventory
    Liu, Yu
    Gong, Xianzheng
    Wang, ZhiHong
    Liu, Wei
    Nie, Zuoren
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 21 - 27
  • [25] Missing Data in Clinical Research: A Tutorial on Multiple Imputation
    Austin, Peter C.
    White, Ian R.
    Lee, Douglas S.
    van Buuren, Stef
    CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (09) : 1322 - 1331
  • [26] Multiple Imputation of Missing Data in Educational Production Functions
    Elasra, Amira
    COMPUTATION, 2022, 10 (04)
  • [27] A nonparametric multiple imputation approach for missing categorical data
    Zhou, Muhan
    He, Yulei
    Yu, Mandi
    Hsu, Chiu-Hsieh
    BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
  • [28] Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
    O’Keeffe A.G.
    Farewell D.M.
    Tom B.D.M.
    Farewell V.T.
    Statistics in Biosciences, 2016, 8 (2) : 310 - 332
  • [29] Multiple imputation of unordered categorical missing data: A comparison of the multivariate normal imputation and multiple imputation by chained equations
    Karangwa, Innocent
    Kotze, Danelle
    Blignaut, Renette
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) : 521 - 539
  • [30] Multiple Imputation A Flexible Tool for Handling Missing Data
    Li, Peng
    Stuart, Elizabeth A.
    Allison, David B.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (18): : 1966 - 1967