Impact of liquid absorption process development on the costs of post-combustion capture in Australian coal-fired power stations

被引:30
|
作者
Dave, N. [1 ]
Do, T. [1 ]
Palfreyman, D. [1 ]
Feron, P. H. M. [1 ]
机构
[1] CSIRO Energy Technol, N Ryde, NSW 2113, Australia
来源
关键词
Post-combustion CO2 capture; Carbon capture; Coal fired power plants; Greenhouse gas mitigation;
D O I
10.1016/j.cherd.2010.09.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Australian power generators produce approximately 170 TWh per annum of electricity using black and brown coals that accounts for 170 Mtonne of CO2 emissions per annum or over 40% of anthropogenic CO2 emissions in Australia. This paper describes the results of a techno-economic evaluation of liquid absorption based post-combustion capture (PCC) processes for both existing and new pulverised coal-fired power stations in Australia. The overall process designs incorporate both the case with continuous capture and the case with the flexibility to switch a CO2 capture plant on or off depending upon the demand and market price for electricity, and addresses the impact of the presently limited emission controls on the process cost. The techno-economic evaluation includes both air and water cooled power and CO2 capture plants, resulting in cost of power generation for the situations without and with PCC. Whilst existing power plants in Australia are all water cooled sub-critical designs, the new power plants are deemed to range from supercritical single reheat to ultra-supercritical double reheat designs, with a preference for air-cooling. The process evaluation also includes a detailed sensitivity analysis of the thermodynamic properties of liquid absorbent for CO2 on the overall costs. The results show that for a meaningful decrease in the efficiency and cost penalties associated with the post combustion CO2 capture, a novel liquid sorbent will need to have heat of absorption/desorption, sensible heat and heat of vaporisation around 50% less in comparison with 30% (w/w) aqueous MEA solvent. It also shows that the impact of the capital costs of FCC processes is quite large on the added cost of generation. The results can be used to prioritise PCC research in an Australian context. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1625 / 1638
页数:14
相关论文
共 50 条
  • [31] Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation
    Liu, Xiaoyan
    Chen, Jian
    Luo, Xiaobo
    Wang, Meihong
    Meng, Hui
    FUEL, 2015, 158 : 625 - 633
  • [32] Model Predictive Control of Post-combustion CO2 Capture System for Coal-fired Power Plants
    Dai, Baoxin
    Wu, Xiao
    Liang, Xiufan
    Shen, Jiong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9315 - 9320
  • [33] Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants
    Zhai, Haibo
    Rubin, Edward S.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1321 - 1328
  • [34] Evaluation of cooling requirements of post-combustion CO2 capture applied to coal-fired power plants
    Brandl, Patrick
    Soltani, Salman Masoudi
    Fennell, Paul S.
    Mac Dowell, Niall
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 122 : 1 - 10
  • [35] Technical and economic analysis of retrofitting a post-combustion carbon capture system in a Thai coal-fired power plant
    Lungkadee, Thananat
    Onsree, Thossaporn
    Tangparitkul, Suparit
    Janwiruch, Naruphol
    Nuntaphan, Atipoang
    Tippayawong, Nakorn
    ENERGY REPORTS, 2021, 7 : 308 - 313
  • [36] Technical and economic analysis of retrofitting a post-combustion carbon capture system in a Thai coal-fired power plant
    Lungkadee, Thananat
    Onsree, Thossaporn
    Tangparitkul, Suparit
    Janwiruch, Naruphol
    Nuntaphan, Atipoang
    Tippayawong, Nakorn
    ENERGY REPORTS, 2021, 7 : 308 - 313
  • [37] Analysis of CO2 post-combustion capture in coal-fired power plants integrated with renewable energies
    Carapellucci, Roberto
    Giordano, Lorena
    Vaccarelli, Maura
    70TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, ATI2015, 2015, 82 : 350 - 357
  • [38] The development of coal-fired thermal power stations
    Salamov, A.A.
    1600, IAPC Nauka/Interperiodica (47):
  • [39] Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants
    Lawal, A.
    Wang, M.
    Stephenson, P.
    Yeung, H.
    FUEL, 2009, 88 (12) : 2455 - 2462
  • [40] Dynamic Modelling and Analysis of Supercritical Coal-Fired Power Plant Integrated with Post-combustion CO2 Capture
    Olaleye, Akeem K.
    Oko, Eni
    Wang, Meihong
    Kelsall, Gregg
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 359 - 363