Correction to the diameter of trivalent Cayley graphs

被引:0
|
作者
Okawa, S [1 ]
机构
[1] Univ Aizu, Fac Comp Sci & Engn, Aizu Wakamatsu Shi 9658580, Japan
关键词
network topology; trivalent Cayley graph; diameter;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The trivalent Cayley graph TCn was introduced and investigated in [1], [2]. Though "the diameter" was presented in [2], unfortunately it was not the diameter but an upper bound of it. In this paper, a lower bound of the diameter dia(TCn) of the trivalent Cayley graph TCn is investigated and the formula dia(TCn) = 2n - 2 for n greater than or equal to 3 is established.
引用
收藏
页码:1269 / 1272
页数:4
相关论文
共 50 条
  • [11] On the Diameter of Unitary Cayley Graphs of Rings
    Su, Huadong
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 652 - 660
  • [12] On the Spectral Gap and the Diameter of Cayley Graphs
    I. D. Shkredov
    Proceedings of the Steklov Institute of Mathematics, 2021, 314 : 307 - 324
  • [13] On the Spectral Gap and the Diameter of Cayley Graphs
    Shkredov, I. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 314 (01) : 307 - 324
  • [14] Large Cayley graphs of small diameter
    Erskine, Grahame
    Tuite, James
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 202 - 214
  • [15] ON BIPARTITE CAYLEY GRAPHS OF SMALL DIAMETER
    Vetrik, Tomas
    MATHEMATICAL REPORTS, 2018, 20 (02): : 171 - 176
  • [16] Minimum feedback node sets in trivalent Cayley graphs
    Suzuki, Y
    Kaneko, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (09): : 1634 - 1636
  • [17] Minimum Feedback Node Sets in Trivalent Cayley Graphs
    Suzuki, Yasuto
    Kaneko, Keiichi
    IEICE Transactions on Information and Systems, 2003, E86-D (09) : 1634 - 1636
  • [18] EXCEPTIONAL TRIVALENT CAYLEY-GRAPHS FOR DIHEDRAL GROUPS
    POWERS, DL
    JOURNAL OF GRAPH THEORY, 1982, 6 (01) : 43 - 55
  • [19] DOMINATION PARAMETERS AND DIAMETER OF ABELIAN CAYLEY GRAPHS
    Iranmanesh, Mohammad A.
    Moghaddami, Nasrin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 695 - 715
  • [20] The Thresholds for Diameter 2 in Random Cayley Graphs
    Christofides, Demetres
    Markstrom, Klas
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (02) : 218 - 235