Correction to the diameter of trivalent Cayley graphs

被引:0
|
作者
Okawa, S [1 ]
机构
[1] Univ Aizu, Fac Comp Sci & Engn, Aizu Wakamatsu Shi 9658580, Japan
关键词
network topology; trivalent Cayley graph; diameter;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The trivalent Cayley graph TCn was introduced and investigated in [1], [2]. Though "the diameter" was presented in [2], unfortunately it was not the diameter but an upper bound of it. In this paper, a lower bound of the diameter dia(TCn) of the trivalent Cayley graph TCn is investigated and the formula dia(TCn) = 2n - 2 for n greater than or equal to 3 is established.
引用
收藏
页码:1269 / 1272
页数:4
相关论文
共 50 条
  • [1] The correct diameter of trivalent Cayley graphs
    Tsai, CH
    Hung, CN
    Hsu, LH
    Chang, CH
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 109 - 111
  • [2] On the pagenumber of trivalent Cayley graphs
    Tanaka, Y
    Shibata, Y
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (08) : 1279 - 1292
  • [3] Hamilton cycles in Trivalent Cayley graphs
    Wagh, MD
    Mo, JC
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 177 - 181
  • [4] ON WIDE DIAMETER OF CAYLEY GRAPHS
    Jia, Kevin E.
    Zhang, Alicia Q.
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 219 - 231
  • [5] On diameter two Cayley graphs
    Jin, Wei
    Tan, Li
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 434
  • [6] Diameter of Ramanujan Graphs and Random Cayley Graphs
    Sardari, Naser T.
    COMBINATORICA, 2019, 39 (02) : 427 - 446
  • [7] Diameter of Ramanujan Graphs and Random Cayley Graphs
    Naser T. Sardari
    Combinatorica, 2019, 39 : 427 - 446
  • [8] TRIVALENT CAYLEY-GRAPHS FOR INTERCONNECTION NETWORKS
    VADAPALLI, P
    SRIMANI, PK
    INFORMATION PROCESSING LETTERS, 1995, 54 (06) : 329 - 335
  • [9] Cyclic Vertex Connectivity of Trivalent Cayley Graphs
    Ke, Jenn-Yang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (07): : 1828 - 1834
  • [10] Arc-transitive trivalent Cayley graphs
    Conder, Marston
    JOURNAL OF ALGEBRA, 2022, 610 : 896 - 910