NASICON to scandium wolframate transition in Li1+xMxHf2-x(PO4)3 (M = Cr, Fe):: structure and ionic conductivity

被引:44
|
作者
Losilla, ER
Bruque, S
Aranda, MAG
Moreno-Real, L
Morin, E
Quarton, M
机构
[1] Univ Malaga, Dept Quim Inorgan Cristalog & Mineral, E-29071 Malaga, Spain
[2] Univ Paris 06, Lab Cristallochim Solide, F-75252 Paris 05, France
关键词
NASICON-related materials; scandium wolframate; Li ionic conductors;
D O I
10.1016/S0167-2738(98)00207-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li1+xMxHf2-x(PO4)(3) (M = Cr, Fe, Bi) systems have been studied and single phases have been isolated for M = Cr and Fe. The samples have been characterized by X-ray powder diffraction, diffuse reflectance and impedance spectroscopy. There is a reconstructive transition between rombohedral NASICON and orthorhombic Sc-2(WO4)(3)-type structures as a function of x, at very low values, 0.2 and 0.1 for Cr and Fe, respectively. For the Cr series, a further subtle structural change has been observed for I values higher than 1.7. These phases have the Sc-2(WO4)(3)-type framework, but the symmetry is orthorhombic Pcnb at low values of x and monoclinic P2(1)/n at high values. The structural changes are discussed on the basis of the sizes of the cavities left by the two frameworks and the lithium order/disorder in these voids. These materials are ionic conductors and their electrical behaviours are also discussed. (C) 1998 Elsevier Science BN. All rights reserved.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [41] Ionic Conductivity of Mixed Phosphates of the Composition Li3-2xNbxIn2-x(PO4)3
    Shaikhlislamova, A. R.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2008, 44 (11) : 1227 - 1232
  • [42] Ionic conductivity of new ionic conductor Li3(In1-xScx)2(PO4)3
    Suzuki, T.
    Yoshikawa, K.
    Hayakawa, N.
    Uematsu, K.
    Toda, K.
    Sato, M.
    Key Engineering Materials, 1999, 169 : 205 - 208
  • [43] Microstructure and ion transport in Li1 + xTi2 − xMx(PO4)3 (M = Cr, Fe, Al) NASICON-type materials
    A. I. Svitan’ko
    S. A. Novikova
    I. A. Stenina
    V. A. Skopets
    A. B. Yaroslavtsev
    Inorganic Materials, 2014, 50 : 273 - 279
  • [44] Ionic conductivity and crystal structure for the Li3-2xCr2-xTax(PO4)3 system
    Aono, H
    bin Idris, MA
    Sadaoka, Y
    SOLID STATE IONICS, 2004, 166 (1-2) : 53 - 59
  • [45] Synthesis and ionic conductivity of (NH4)1–xHxHf2(PO4)3 (x = 0–1) NASICON-type materials
    M. A. Moshareva
    S. A. Novikova
    A. B. Yaroslavtsev
    Inorganic Materials, 2016, 52 : 1283 - 1290
  • [46] On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials
    Arbi, K.
    Jimenez, R.
    Salkus, T.
    Orliukas, A. F.
    Sanz, J.
    SOLID STATE IONICS, 2015, 271 : 28 - 33
  • [47] Synthesis and lithium ionic conductivity of Li3-2x(In1-xZrx)2(PO4)3 (0≤x≤0.20)
    Yoshikawa, K
    Hayakawa, N
    Suzuki, T
    Uematsu, K
    Toda, K
    Sato, M
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (6-7) : 879 - 882
  • [48] The NASICON solid solution Li1−xLax/3Zr2(PO4)3: optimization of the sintering process and ionic conductivity measurements
    M. Barré
    F. Le Berre
    M-P. Crosnier-Lopez
    C. Galven
    O. Bohnké
    J-L. Fourquet
    Ionics, 2009, 15 : 681 - 687
  • [49] The anomalous ionic conductivity in the NaZr2(PO4)(3) NASICON single-crystals
    IvanovChits, AK
    Bykov, AB
    Verin, IA
    KRISTALLOGRAFIYA, 1996, 41 (06): : 1060 - 1062
  • [50] Cation mobility in NASICON compounds Li1-xZr2-xNbx(PO4)3 and Li1+xZr2-xScx(PO4)3
    Stenina, IA
    Aliev, AD
    Antipov, EV
    Velikodnyi, YA
    Rebrov, AI
    Yaroslavtsev, AB
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2002, 47 (10) : 1437 - 1444