NASICON to scandium wolframate transition in Li1+xMxHf2-x(PO4)3 (M = Cr, Fe):: structure and ionic conductivity

被引:44
|
作者
Losilla, ER
Bruque, S
Aranda, MAG
Moreno-Real, L
Morin, E
Quarton, M
机构
[1] Univ Malaga, Dept Quim Inorgan Cristalog & Mineral, E-29071 Malaga, Spain
[2] Univ Paris 06, Lab Cristallochim Solide, F-75252 Paris 05, France
关键词
NASICON-related materials; scandium wolframate; Li ionic conductors;
D O I
10.1016/S0167-2738(98)00207-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li1+xMxHf2-x(PO4)(3) (M = Cr, Fe, Bi) systems have been studied and single phases have been isolated for M = Cr and Fe. The samples have been characterized by X-ray powder diffraction, diffuse reflectance and impedance spectroscopy. There is a reconstructive transition between rombohedral NASICON and orthorhombic Sc-2(WO4)(3)-type structures as a function of x, at very low values, 0.2 and 0.1 for Cr and Fe, respectively. For the Cr series, a further subtle structural change has been observed for I values higher than 1.7. These phases have the Sc-2(WO4)(3)-type framework, but the symmetry is orthorhombic Pcnb at low values of x and monoclinic P2(1)/n at high values. The structural changes are discussed on the basis of the sizes of the cavities left by the two frameworks and the lithium order/disorder in these voids. These materials are ionic conductors and their electrical behaviours are also discussed. (C) 1998 Elsevier Science BN. All rights reserved.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Li3–2xNbxCr2–x(PO4)3 Complex Phosphates with the NASICON Structure: Synthesis and Ionic Conductivity
    S. A. Novikova
    A. B. Yaroslavtsev
    Membranes and Membrane Technologies, 2024, 6 (6) : 433 - 438
  • [2] High lithium ionic conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON series
    Maldonado-Manso, P
    Losilla, ER
    Martínez-Lara, M
    Aranda, MAG
    Bruque, S
    Mouahid, FE
    Zahir, M
    CHEMISTRY OF MATERIALS, 2003, 15 (09) : 1879 - 1885
  • [3] Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics
    Narvaez-Semanate, J. L.
    Rodrigues, A. C. M.
    SOLID STATE IONICS, 2010, 181 (25-26) : 1197 - 1204
  • [4] New nasicon Li1+xAlxGeyTi2-x-y(PO4)3 compositions with high lithium ionic conductivity
    Maldonado-Manso, Pilar
    Morsli, Khadija
    Mouahid, Fatima-Ezzohra
    Zahir, Mohammed
    Bruoue, Sebastian
    Losilla, Enrique R.
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2007, 32 (06): : 561 - 572
  • [5] IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, GY
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) : 590 - 591
  • [6] Li+/H+ ion exchange in Li3-2x Nb x M2-x (PO4)3 (M = In, Fe) materials with a NASICON structure
    Shaikhlislamova, A. R.
    Zhuravlev, N. A.
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2010, 55 (01) : 18 - 22
  • [7] Microstructure and ion transport in Li1+x Ti2-x M x (PO4)3 (M = Cr, Fe, Al) NASICON-type materials
    Svitan'ko, A. I.
    Novikova, S. A.
    Stenina, I. A.
    Skopets, V. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2014, 50 (03) : 273 - 279
  • [8] Ionic conductivity of A3 − 2xNbxAl2 − x(PO4)3 (A = Li, Na) NASICON-type phosphates
    A. R. Shaikhlislamova
    A. Yu. Goryainov
    A. B. Yaroslavtsev
    Inorganic Materials, 2010, 46 : 896 - 899
  • [9] Phase transition and ionic mobility in LiHf2(PO4)(3) with NASICON structure
    Paris, MA
    MartinezJuarez, A
    Iglesias, JE
    Rojo, JM
    Sanz, J
    CHEMISTRY OF MATERIALS, 1997, 9 (06) : 1430 - 1436
  • [10] HIGH IONIC-CONDUCTIVITY IN THE COMPOUNDS LI3FE2(PO4)3 AND LI3SC2(PO4)3
    GENKINA, EA
    DEMYANETS, LN
    IVANOVSHITS, AK
    MAKSIMOV, BA
    MELNIKOV, OK
    SIMONOV, VI
    JETP LETTERS, 1983, 38 (05) : 305 - 308