A Comparison of Imaging Methodologies for 3D Tissue Engineering

被引:55
|
作者
Smith, Louise E. [1 ]
Smallwood, Rod [2 ]
Macneil, Sheila [1 ]
机构
[1] Univ Sheffield, Tissue Engn Grp, Kroto Res Inst, Dept Mat Engn, Sheffield S3 7HQ, S Yorkshire, England
[2] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
关键词
confocal laser scanning microscopy; optical coherence tomography; electron microscopy; OPTICAL COHERENCE TOMOGRAPHY; TRANSFECTION METHOD; CELL-DYNAMICS; SKIN; SCAFFOLDS; FIBROBLASTS; MICROSCOPY; RESOLUTION; CULTURE;
D O I
10.1002/jemt.20859
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Imaging of cells in two dimensions is routinely performed within cell biology and tissue engineering laboratories. When biology moves into three dimensions imaging becomes more challenging, especially when multiple cell types are used. This review compares imaging techniques used regularly in our laboratory in the culture of cells in both two and three dimensions. The techniques reviewed include phase contrast microscopy, fluorescent microscopy, confocal laser scanning microscopy, electron microscopy, and optical coherence tomography. We compare these techniques to the current "gold standard'' for imaging three-dimensional tissue engineered constructs, histology. Microsc. Res. Tech. 73:1123-1133, 2010. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1123 / 1133
页数:11
相关论文
共 50 条
  • [41] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [42] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [43] 3D Nanoprinting Technologies for Tissue Engineering Applications
    Lee, Jin Woo
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [44] 3D bioprinting in tissue engineering and regenerative medicine
    Gupta, Sharda
    Bit, Arindam
    CELL AND TISSUE BANKING, 2022, 23 (02) : 199 - 212
  • [45] Advances in 3D Bioprinting for Neural Tissue Engineering
    Lee, Se-Jun
    Esworthy, Timothy
    Stake, Seth
    Miao, Shida
    Zuo, Yi Y.
    Harris, Brent T.
    Zhang, Lijie Grace
    ADVANCED BIOSYSTEMS, 2018, 2 (04)
  • [46] 3D Bioprinting in Skeletal Muscle Tissue Engineering
    Ostrovidov, Serge
    Salehi, Sahar
    Costantini, Marco
    Suthiwanich, Kasinan
    Ebrahimi, Majid
    Sadeghian, Ramin Banan
    Fujie, Toshinori
    Shi, Xuetao
    Cannata, Stefano
    Gargioli, Cesare
    Tamayol, Ali
    Dokmeci, Mehmet Remzi
    Orive, Gorka
    Swieszkowski, Wojciech
    Khademhosseini, Ali
    SMALL, 2019, 15 (24)
  • [47] 3D bioprinting in tissue engineering and regenerative medicine
    Sharda Gupta
    Arindam Bit
    Cell and Tissue Banking, 2022, 23 : 199 - 212
  • [48] 3D Printing of Bioceramics for Bone Tissue Engineering
    Zafar, Muhammad Jamshaid
    Zhu, Dongbin
    Zhang, Zhengyan
    MATERIALS, 2019, 12 (20)
  • [49] 3D Printing metamaterials towards tissue engineering
    Dogan, Elvan
    Bhusal, Anant
    Cecen, Berivan
    Miri, Amir K.
    APPLIED MATERIALS TODAY, 2020, 20
  • [50] A review on 3D printing in tissue engineering applications
    Mani, Mohan Prasath
    Sadia, Madeeha
    Jaganathan, Saravana Kumar
    Khudzari, Ahmad Zahran
    Supriyanto, Eko
    Saidin, Syafiqah
    Ramakrishna, Seeram
    Ismail, Ahmad Fauzi
    Faudzi, Ahmad Athif Mohd
    JOURNAL OF POLYMER ENGINEERING, 2022, 42 (03) : 243 - 265