The Turan number of k•Sl

被引:5
|
作者
Li, Sha-Sha [1 ]
Yin, Jian-Hua [1 ]
Li, Jia-Yun [1 ]
机构
[1] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Turan number; Disjoint copies; k center dot S-l;
D O I
10.1016/j.disc.2021.112653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Turan number of a graph H, denoted by ex(n, H), is the maximum number of edges of an n-vertex simple graph having no H as a subgraph. Let S-l denote the star on l + 1 vertices, and let k center dot S-l denote the disjoint union of k copies of S-l. Erdos and Gallai determined ex(n, k center dot S-1) for all positive integers k and n. Yuan and Zhang determined ex(n, k center dot S-2) and characterized all extremal graphs for all positive integers k and n. Lidicky et al. determined ex(n, k center dot S-l) for k, l >= 1 and n sufficiently large. Lan et al. determined ex(n, k center dot S-l) for k >= 2, l >= 3 and n >= k(l(2) + l + 1) - 2 (l - 3). In this paper, we completely determine ex(n, k center dot S-l) for all positive integers k, B and n. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Inverting the Turan problem with chromatic number
    Zhu, Xiutao
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2021, 344 (09)
  • [32] On the cover Turan number of Berge hypergraphs
    Lu, Linyuan
    Wang, Zhiyu
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 98
  • [33] On the finiteness of the number of orbits on quasihomogeneous (ℂ*)k × SL2(ℂ)-manifolds
    E. V. Sharoiko
    Mathematical Notes, 2007, 81 : 686 - 694
  • [34] The Turan number of directed paths and oriented cycles
    Zhou, Wenling
    Li, Binlong
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [35] On Generalized Turan Number of Two Disjoint Cliques
    Yuan, Xiaoli
    Yang, Weihua
    GRAPHS AND COMBINATORICS, 2022, 38 (04)
  • [36] Generalized outerplanar Turan number of short paths
    Gyori, Ervin
    Paulos, Addisu
    Xiao, Chuanqi
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [37] Planar Turan number of the 7-cycle
    Shi, Ruilin
    Walsh, Zach
    Yu, Xingxing
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 126
  • [38] On the Turan number of some ordered even cycles
    Gyori, Ervin
    Korandi, Daniel
    Methuku, Abhishek
    Tomon, Istvan
    Tompkins, Casey
    Vizer, Mate
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 73 : 81 - 88
  • [39] Turan number for odd-ballooning of trees
    Zhu, Xiutao
    Chen, Yaojun
    JOURNAL OF GRAPH THEORY, 2023, 104 (02) : 261 - 274
  • [40] ON TURAN,PAUL WORK IN NUMBER-THEORY
    PINTZ, J
    JOURNAL OF NUMBER THEORY, 1981, 13 (03) : 279 - 298