Molecular Monolayer Sensing Using Surface Plasmon Resonance and Angular Goos-Hanchen Shift

被引:2
|
作者
Olaya, Cherrie May [1 ,2 ]
Hayazawa, Norihiko [1 ,2 ]
Balois-Oguchi, Maria Vanessa [2 ]
Hermosa, Nathaniel [1 ]
Tanaka, Takuo [1 ,2 ,3 ]
机构
[1] Univ Philippines Diliman, Natl Inst Phys, Quezon City 1101, Philippines
[2] RIKEN Ctr Adv Photon, Innovat Photon Manipulat Res Team, Wako, Saitama 3510198, Japan
[3] RIKEN Cluster Pioneering Res, Metamat Lab, Wako, Saitama 3510198, Japan
关键词
surface plasmon resonance; goos-hanchen shift; fresnel; plasmon; self-assembled monolayer; PROPAGATION; REFLECTION;
D O I
10.3390/s21134593
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrate potential molecular monolayer detection using measurements of surface plasmon resonance (SPR) and angular Goos-Hanchen (GH) shift. Here, the molecular monolayer of interest is a benzenethiol self-assembled monolayer (BT-SAM) adsorbed on a gold (Au) substrate. Excitation of surface plasmons enhanced the GH shift which was dominated by angular GH shift because we focused the incident beam to a small beam waist making spatial GH shift negligible. For measurements in ambient, the presence of BT-SAM on a Au substrate induces hydrophobicity which decreases the likelihood of contamination on the surface allowing for molecular monolayer sensing. This is in contrast to the hydrophilic nature of a clean Au surface that is highly susceptible to contamination. Since our measurements were made in ambient, larger SPR angle than the expected value was measured due to the contamination in the Au substrate. In contrast, the SPR angle was smaller when BT-SAM coated the Au substrate due to the minimization of contaminants brought about by Au surface modification. Detection of the molecular monolayer acounts for the small change in the SPR angle from the expected value.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Observation of the Goos-Hanchen Shift with Neutrons
    de Haan, Victor-O.
    Plomp, Jeroen
    Rekveldt, Theo M.
    Kraan, Wicher H.
    van Well, Ad A.
    Dalgliesh, Robert M.
    Langridge, Sean
    PHYSICAL REVIEW LETTERS, 2010, 104 (01)
  • [32] AN ELEMENTARY PRESENTATION OF THE GOOS-HANCHEN SHIFT
    RISSET, CA
    VIGOUREUX, JM
    OPTICS COMMUNICATIONS, 1992, 91 (3-4) : 155 - 157
  • [33] GOOS-HANCHEN SHIFT AT AN ABSORBING MEDIUM
    GILES, CL
    WILD, WJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1980, 70 (12) : 1607 - 1608
  • [34] Coherent control of the Goos-Hanchen shift
    Ziauddin
    Qamar, Sajid
    Zubairy, M. Suhail
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [35] Goos-Hanchen shift in bilayer graphene
    Cheng, M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (03):
  • [36] Weak measurement of the Goos-Hanchen shift
    Jayaswal, G.
    Mistura, G.
    Merano, M.
    OPTICS LETTERS, 2013, 38 (08) : 1232 - 1234
  • [37] The Normal Incidence Goos-Hanchen Shift
    Dumelow, T.
    Lima, F.
    da Costa, J. A. P.
    Albuquerque, E. L.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3327 - +
  • [38] UNIFIED APPROACH TO GOOS-HANCHEN SHIFT
    CARNIGLIA, CK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (10) : 1135 - 1135
  • [39] The frequency crossover for the Goos-Hanchen shift
    Araujo, Manoel P.
    Carvalho, Silvania A.
    De Leo, Stefano
    JOURNAL OF MODERN OPTICS, 2013, 60 (20) : 1772 - 1780
  • [40] An experiment to measure the Goos-Hanchen shift
    Prajapati, Chandravati
    Ranganathan, D.
    Joseph, Joby
    2012 INTERNATIONAL CONFERENCE ON FIBER OPTICS AND PHOTONICS (PHOTONICS), 2012,