Optimal Rational Function Approximation for Fractional Integral and Differential Operators

被引:0
|
作者
Zhang Xuxiu [1 ]
Yao Xin [1 ]
Fei Jiyou [2 ]
机构
[1] Dalian Jiaotong Univ, Sch Elect & Informat Engn, Dalian, Peoples R China
[2] Dalian Jiaotong Univ, Sch Bullet Train Applicat & Maintenance Engn, Dalian, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional integral and differential operators; Rational function approximation; Bode diagram; Optimal rational function approximation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bode diagram based rational function approximation method for fractional integral and differential operators are analyzed in detail. For the approximation rational function orders is the lowest under satisfying approximation accuracy in the approximation frequency interval, two steps are proposed: 1) Choose reasonable initial and terminal frequency of rational function logarithmic amplitude-frequency characteristic. 2) Set approximation error of logarithmic amplitude-frequency characteristic by taking the error between asymptote and exact value into account. Computation examples demonstrate the validity of this method.
引用
收藏
页码:27 / 30
页数:4
相关论文
共 50 条
  • [41] On approximation of certain integral operators
    Gupta V.
    Yadav R.
    Acta Mathematica Vietnamica, 2014, 39 (2) : 193 - 203
  • [42] Discrete approximation of integral operators
    Franz, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2437 - 2446
  • [43] Approximation by Choquet integral operators
    Sorin G. Gal
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 881 - 896
  • [44] Approximation by Choquet integral operators
    Gal, Sorin G.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) : 881 - 896
  • [45] OPTIMAL APPROXIMATION OF OPERATORS
    MOROZOV, VA
    GREBENNIKOV, AI
    DOKLADY AKADEMII NAUK SSSR, 1975, 223 (06): : 1307 - 1310
  • [46] On unified fractional integral operators
    Gupta, KC
    Soni, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1996, 106 (01): : 53 - 64
  • [47] ON AN INTEGRAL OF FRACTIONAL POWER OPERATORS
    Dungey, Nick
    COLLOQUIUM MATHEMATICUM, 2009, 117 (02) : 157 - 164
  • [48] Commutators with fractional integral operators
    Holmes, Irina
    Rahm, Robert
    Spencer, Scott
    STUDIA MATHEMATICA, 2016, 233 (03) : 279 - 291
  • [49] Fractional approximation by Bernstein operators
    Yu, Dansheng
    Zhou, Ping
    FILOMAT, 2024, 38 (15) : 5499 - 5506
  • [50] RATIONAL APPROXIMATION OF THE FUNCTIONS REPRESENTABLE AS A FRACTIONAL ORDER INTEGRAL IN THE RIEMANN-LIOUVILLE SENSE
    STAROVOITOV, AP
    DOKLADY AKADEMII NAUK BELARUSI, 1985, 29 (12): : 1079 - 1081