Fast precision estimation in high-dimensional multivariate joint models

被引:3
|
作者
Nassiri, Vahid [1 ]
Ivanova, Anna [1 ]
Molenberghs, Geert [1 ,2 ]
Verbeke, Geert [1 ,2 ]
机构
[1] Katholieke Univ Leuven, I BioStat, Kapucijnenvoer 35 Blok D Box 7001, BE-3000 Leuven, Belgium
[2] Univ Hasselt, I BioStat, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium
基金
比利时弗兰德研究基金会;
关键词
Multiple outputation; Joint model; Random effects; LONGITUDINAL DATA;
D O I
10.1002/bimj.201600241
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fast way is proposed based on the multiple outputation idea (Hoffman et al., 2001; Follmann et al., 2003) to calculate the precision of parameter estimates for high-dimensional multivariate joint models using a pairwise approach (Fieuws and Verbeke, 2006; Fieuws et al., 2007). Simulation results as well as data analysis shows possibly more than 2500 times faster computations using the proposed method. In our real data illustration, the time gain is more than 330 times.
引用
收藏
页码:1221 / 1231
页数:11
相关论文
共 50 条
  • [41] Balanced estimation for high-dimensional measurement error models
    Zheng, Zemin
    Li, Yang
    Yu, Chongxiu
    Li, Gaorong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 126 : 78 - 91
  • [42] Adaptive bridge estimation for high-dimensional regression models
    Chen, Zhihong
    Zhu, Yanling
    Zhu, Chao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [43] A joint estimation for the high-dimensional regression modeling on stratified data
    Gao, Yimiao
    Yang, Yuehan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 6129 - 6140
  • [44] Asymptotic properties on high-dimensional multivariate regression M-estimation
    Ding, Hao
    Qin, Shanshan
    Wu, Yuehua
    Wu, Yaohua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 183
  • [45] High-dimensional consistency of rank estimation criteria in multivariate linear model
    Fujikoshi, Yasunori
    Sakurai, Tetsuro
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 149 : 199 - 212
  • [46] Adaptive banding covariance estimation for high-dimensional multivariate longitudinal data
    Qian, Fang
    Zhang, Weiping
    Chen, Yu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 906 - 938
  • [47] Multivariate autoregressive model estimation for high-dimensional intracranial electrophysiological data
    Endemann, Christopher M.
    Krause, Bryan M.
    Nourski, Kirill, V
    Banks, Matthew, I
    Van Veen, Barry
    NEUROIMAGE, 2022, 254
  • [48] BAYESIAN JOINT MODELING OF HIGH-DIMENSIONAL DISCRETE MULTIVARIATE LONGITUDINAL DATA USING GENERALIZED LINEAR MIXED MODELS
    Hauser, Paloma
    Tan, Xianming
    Chen, Fang
    Chen, Ronald c.
    Ibrahim, Joseph g.
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2326 - 2341
  • [49] Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation
    Zhang, Qian
    Zheng, Yilin
    Honorio, Jean
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [50] L1 Regularization for High-Dimensional Multivariate GARCH Models
    Yao, Sijie
    Zou, Hui
    Xing, Haipeng
    RISKS, 2024, 12 (02)