An Adversarial Network-based Multi-model Black-box Attack

被引:0
|
作者
Lin, Bin [1 ]
Chen, Jixin [2 ]
Zhang, Zhihong [3 ]
Lai, Yanlin [2 ]
Wu, Xinlong [2 ]
Tian, Lulu [4 ]
Cheng, Wangchi [5 ]
机构
[1] Sichuan Normal Univ, Chengdu 610066, Peoples R China
[2] Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R China
[3] AECC Sichuan Gas Turbine Estab, Mianyang 621700, Sichuan, Peoples R China
[4] Brunel Univ London, Uxbridge UB8 3PH, Middx, England
[5] Inst Logist Sci & Technol, Beijing 100166, Peoples R China
来源
关键词
Black-box attack; adversarial examples; GAN; multi-model; deep neural networks;
D O I
10.32604/iasc.2021.016818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Researches have shown that Deep neural networks (DNNs) are vulnerable to adversarial examples. In this paper, we propose a generative model to explore how to produce adversarial examples that can deceive multiple deep learning models simultaneously. Unlike most of popular adversarial attack algorithms, the one proposed in this paper is based on the Generative Adversarial Networks (GAN). It can quickly produce adversarial examples and perform black-box attacks on multi-model. To enhance the transferability of the samples generated by our approach, we use multiple neural networks in the training process. Experimental results on MNIST showed that our method can efficiently generate adversarial examples. Moreover, it can successfully attack various classes of deep neural networks at the same time, such as fully connected neural networks (FCNN), convolutional neural networks (CNN) and recurrent neural networks (RNN). We performed a black-box attack on VGG16 and the experimental results showed that when the test data classes are ten (0-9), the attack success rate is 97.68%, and when the test data classes are seven (0-6), the attack success rate is up to 98.25%.
引用
收藏
页码:641 / 649
页数:9
相关论文
共 50 条
  • [41] Black-box Adversarial Attack on License Plate Recognition System
    Chen J.-Y.
    Shen S.-J.
    Su M.-M.
    Zheng H.-B.
    Xiong H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 121 - 135
  • [42] Substitute Meta-Learning for Black-Box Adversarial Attack
    Hu, Cong
    Xu, Hao-Qi
    Wu, Xiao-Jun
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2472 - 2476
  • [43] Black-box Adversarial Attack and Defense on Graph Neural Networks
    Li, Haoyang
    Di, Shimin
    Li, Zijian
    Chen, Lei
    Cao, Jiannong
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1017 - 1030
  • [44] Towards Efficient Data Free Black-box Adversarial Attack
    Zhang, Jie
    Li, Bo
    Xu, Jianghe
    Wu, Shuang
    Ding, Shouhong
    Zhang, Lei
    Wu, Chao
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15094 - 15104
  • [45] Black-box Adversarial Attack Against Road Sign Recognition Model via PSO
    Chen J.-Y.
    Chen Z.-Q.
    Zheng H.-B.
    Shen S.-J.
    Su M.-M.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (09): : 2785 - 2801
  • [46] Pseudo-Siamese Network based Timbre-reserved Black-box Adversarial Attack in Speaker Identification
    Wang, Qing
    Yao, Jixun
    Wang, Ziqian
    Guo, Pengcheng
    Xie, Lei
    INTERSPEECH 2023, 2023, : 3994 - 3998
  • [47] Multi-view Correlation based Black-box Adversarial Attack for 3D Object Detection
    Liu, Bingyu
    Guo, Yuhong
    Jiang, Jianan
    Tang, Jian
    Deng, Weihong
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1036 - 1044
  • [48] An Adversarial Attack Based on Multi-objective Optimization in the Black-Box Scenario: MOEA-APGA II
    Zhang, Chunkai
    Deng, Yepeng
    Guo, Xin
    Wang, Xuan
    Liu, Chuanyi
    INFORMATION AND COMMUNICATIONS SECURITY (ICICS 2019), 2020, 11999 : 603 - 612
  • [49] Black-Box Sparse Adversarial Attack via Multi-Objective Optimisation CVPR Proceedings
    Williams, Phoenix Neale
    Li, Ke
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 12291 - 12301
  • [50] Reinforcement Learning Based Sparse Black-box Adversarial Attack on Video Recognition Models
    Wang, Zeyuan
    Sha, Chaofeng
    Yang, Su
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3162 - 3168