An Adversarial Network-based Multi-model Black-box Attack

被引:0
|
作者
Lin, Bin [1 ]
Chen, Jixin [2 ]
Zhang, Zhihong [3 ]
Lai, Yanlin [2 ]
Wu, Xinlong [2 ]
Tian, Lulu [4 ]
Cheng, Wangchi [5 ]
机构
[1] Sichuan Normal Univ, Chengdu 610066, Peoples R China
[2] Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R China
[3] AECC Sichuan Gas Turbine Estab, Mianyang 621700, Sichuan, Peoples R China
[4] Brunel Univ London, Uxbridge UB8 3PH, Middx, England
[5] Inst Logist Sci & Technol, Beijing 100166, Peoples R China
来源
关键词
Black-box attack; adversarial examples; GAN; multi-model; deep neural networks;
D O I
10.32604/iasc.2021.016818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Researches have shown that Deep neural networks (DNNs) are vulnerable to adversarial examples. In this paper, we propose a generative model to explore how to produce adversarial examples that can deceive multiple deep learning models simultaneously. Unlike most of popular adversarial attack algorithms, the one proposed in this paper is based on the Generative Adversarial Networks (GAN). It can quickly produce adversarial examples and perform black-box attacks on multi-model. To enhance the transferability of the samples generated by our approach, we use multiple neural networks in the training process. Experimental results on MNIST showed that our method can efficiently generate adversarial examples. Moreover, it can successfully attack various classes of deep neural networks at the same time, such as fully connected neural networks (FCNN), convolutional neural networks (CNN) and recurrent neural networks (RNN). We performed a black-box attack on VGG16 and the experimental results showed that when the test data classes are ten (0-9), the attack success rate is 97.68%, and when the test data classes are seven (0-6), the attack success rate is up to 98.25%.
引用
收藏
页码:641 / 649
页数:9
相关论文
共 50 条
  • [1] Black-box adversarial attacks on XSS attack detection model
    Wang, Qiuhua
    Yang, Hui
    Wu, Guohua
    Choo, Kim-Kwang Raymond
    Zhang, Zheng
    Miao, Gongxun
    Ren, Yizhi
    COMPUTERS & SECURITY, 2022, 113
  • [2] SUBSTITUTE MODEL GENERATION FOR BLACK-BOX ADVERSARIAL ATTACK BASED ON KNOWLEDGE DISTILLATION
    Cui, Weiyu
    Li, Xiaorui
    Huang, Jiawei
    Wang, Wenyi
    Wang, Shuai
    Chen, Jianwen
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 648 - 652
  • [3] SIMULATOR ATTACK plus FOR BLACK-BOX ADVERSARIAL ATTACK
    Ji, Yimu
    Ding, Jianyu
    Chen, Zhiyu
    Wu, Fei
    Zhang, Chi
    Sun, Yiming
    Sun, Jing
    Liu, Shangdong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 636 - 640
  • [4] Amora: Black-box Adversarial Morphing Attack
    Wang, Run
    Juefei-Xu, Felix
    Guo, Qing
    Huang, Yihao
    Xie, Xiaofei
    Ma, Lei
    Liu, Yang
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1376 - 1385
  • [5] Adversarial Eigen Attack on Black-Box Models
    Zhou, Linjun
    Cui, Peng
    Zhang, Xingxuan
    Jiang, Yinan
    Yang, Shiqiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15233 - 15241
  • [6] A black-Box adversarial attack for poisoning clustering
    Cina, Antonio Emanuele
    Torcinovich, Alessandro
    Pelillo, Marcello
    PATTERN RECOGNITION, 2022, 122
  • [7] Black-box Adversarial Machine Learning Attack on Network Traffic Classification
    Usama, Muhammad
    Qayyum, Adnan
    Qadir, Junaid
    Al-Fuqaha, Ala
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 84 - 89
  • [8] FLDATN: Black-Box Attack for Face Liveness Detection Based on Adversarial Transformation Network
    Peng, Yali
    Liu, Jianbo
    Long, Min
    Peng, Fei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [9] Iterative Training Attack: A Black-Box Adversarial Attack via Perturbation Generative Network
    Lei, Hong
    Jiang, Wei
    Zhan, Jinyu
    You, Shen
    Jin, Lingxin
    Xie, Xiaona
    Chang, Zhengwei
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (18)
  • [10] Saliency Attack: Towards Imperceptible Black-box Adversarial Attack
    Dai, Zeyu
    Liu, Shengcai
    Li, Qing
    Tang, Ke
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (03)