Role of Vacancies on Electronic and Elastic Properties of RuAl2 Semiconducting Compound from First-Principles Calculations

被引:9
|
作者
Pan, Yong [1 ]
Jin, Chao [1 ]
Mao, Pengyu [1 ]
机构
[1] Southwest Petr Univ, Sch Mat Sci & Engn, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
RuAl2; point defect; electronic properties; elastic modulus; first-principles calculations; THERMODYNAMIC PROPERTIES; SITE PREFERENCE; RU; ALLOYS; SYSTEM; INTERMETALLICS; BEHAVIOR; SIZE;
D O I
10.1007/s11664-017-5709-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RuAl2 is a fascinating intermetallic semiconducting compound. However, the influence of vacancies on the electronic and mechanical properties of RuAl2 is unknown. By means of first-principles calculations, we have investigated the influence of vacancies on the electronic properties, elastic modulus, brittle or ductile behavior and Vickers hardness of RuAl2. Two possible vacancy types, Ru-va and Al-va, are considered. The calculated results show that the Ru-va vacancy is more thermodynamically stable than that of the Al-va vacancy. Importantly, we find that vacancies can improve the electronic properties of RuAl2 because the removed Ru or Al atom enhances the charge overlap between conduction band and the valence band near the Fermi level. In addition, these vacancies weaken the resistance to volume deformation, shear deformation and the elastic stiffness of RuAl2 because the removed atom weakens the localized hybridization between the Ru atom and the Al atom. However, the Ru-va vacancy can improve the Vickers hardness and Al-va vacancies result in brittle-to-ductile transition of RuAl2. The variation of mechanical properties is attributed to the Ru-Al and Al-Al metallic bonds along the shear direction. Therefore, we can conclude that vacances are beneficial for improving the electronic and mechanical properties of RuAl2.
引用
收藏
页码:6639 / 6645
页数:7
相关论文
共 50 条
  • [31] Elastic and Thermodynamic Properties of CdSe from First-Principles Calculations
    TAN Jia-Jin~1 CHENG Yan~1 ZHU Wen-Jun~2 GOU Qing-Quan~1College of Physical Science and Technology
    CommunicationsinTheoreticalPhysics, 2008, 50 (07) : 220 - 226
  • [32] Thermodynamics and elastic properties of Ta from first-principles calculations
    李强
    黄多辉
    曹启龙
    王藩侯
    蔡灵仓
    张修路
    经福谦
    Chinese Physics B, 2012, 21 (12) : 412 - 419
  • [33] Elastic and thermodynamic properties of TiC from first-principles calculations
    YanHong Li
    WanFeng Wang
    Bo Zhu
    Ming Xu
    Jun Zhu
    YanJun Hao
    WeiHu Li
    XiaoJiang Long
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 2196 - 2201
  • [34] Elastic properties of InGaN and InAlN from first-principles calculations
    Lepkowski, S. P.
    Gorczyca, I.
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 83 - 84
  • [35] Elastic and thermodynamic properties of TiC from first-principles calculations
    LI YanHong 1
    2 Institute of Atomic and Molecular Physics
    Science China(Physics,Mechanics & Astronomy), 2011, Mechanics & Astronomy)2011 (12) : 2196 - 2201
  • [36] Elastic and thermodynamic properties of TiC from first-principles calculations
    Li YanHong
    Wang WanFeng
    Zhu Bo
    Xu Ming
    Zhu Jun
    Hao YanJun
    Li WeiHu
    Long XiaoJiang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (12) : 2196 - 2201
  • [37] Predicting Elastic Properties of β-HMX from First-Principles Calculations
    Peng, Qing
    Rahul
    Wang, Guangyu
    Liu, Gui-Rong
    Grimme, Stefan
    De, Suvranu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (18): : 5896 - 5903
  • [38] Structural, electronic, elastic, thermodynamic and vibration properties of TbN compound from first principles calculations
    Ciftci, Y. O.
    Ozayman, M.
    Surucu, G.
    Colakoglu, K.
    Deligoz, E.
    SOLID STATE SCIENCES, 2012, 14 (03) : 401 - 408
  • [39] Elastic properties of Ni2MnGa from first-principles calculations
    Kart, S. Ozdemir
    Cagin, T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 508 (01) : 177 - 183
  • [40] Comprehensive Analysis of the Structural, Electronic, Elastic, and Optical Properties of SrS Compound Under Pressure: First-Principles Calculations
    Meliani, K.
    Haireche, S.
    Bouchenafa, M.
    Elbaa, M.
    Douakh, S.
    Chiker, R.
    BRAZILIAN JOURNAL OF PHYSICS, 2024, 54 (02)