Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression

被引:86
|
作者
Saadatfar, M. [1 ]
Mukherjee, M. [2 ]
Madadi, M. [1 ]
Schroeder-Turk, G. E.
Garcia-Moreno, F. [3 ,4 ]
Schaller, F. M. [5 ]
Hutzler, S. [2 ]
Sheppard, A. P. [1 ]
Banhart, J. [3 ,4 ]
Ramamurty, U. [6 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] Trinity Coll Dublin, Sch Phys, Dublin, Ireland
[3] Helmholtz Ctr Berlin, D-14109 Berlin, Germany
[4] Tech Univ Berlin, D-10623 Berlin, Germany
[5] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
[6] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
基金
澳大利亚研究理事会;
关键词
X-ray computed tomography; Foams; Compression test; Finite element method; TOMOGRAPHIC-IMAGES; TRABECULAR BONE; TRANSPORT-PROPERTIES; ELASTIC PROPERTIES; POROUS MATERIALS; 3D IMAGES; AL FOAM; ANISOTROPY; MECHANISMS; SOLIDS;
D O I
10.1016/j.actamat.2012.02.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the results of an experimental and numerical study conducted on a closed-cell aluminium foam that was subjected to uniaxial compression with lateral constraint. X-ray computed tomography was utilized to gain access into the three-dimensional (3-D) structure of the foam and some aspects of the deformation mechanisms. A series of advanced 3-D image analyses are conducted on the 3-D images aimed at characterizing the strain localization regions. We identify the morphological/geometrical features that are responsible for the collapse of the cells and the strain localization. A novel mathematical approach based on a Minkowski tensor analysis along with the mean intercept length technique were utilized to search for signatures of anisotropy across the foam sample and its evolution as a function of loading. Our results show that regions with higher degrees of anisotropy in the undeformed foam have a tendency to initiate the onset of cell collapse. Furthermore, we show that strain hardening occurs predominantly in regions with large cells and high anisotropy. We combine the finite element method with the tomographic images to simulate the mechanical response of the foam. We predict further deformation in regions where the foam is already deformed. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
引用
收藏
页码:3604 / 3615
页数:12
相关论文
共 50 条
  • [41] On the moduli of closed-cell aluminum foam
    Mondal, D. P.
    Ramakrishnan, N.
    Suresh, K. S.
    Das, S.
    SCRIPTA MATERIALIA, 2007, 57 (10) : 929 - 932
  • [42] Detailed Analysis of Closed-Cell Aluminum Alloy Foam Internal Structure Changes during Compressive Deformation
    Ulbin, Miran
    Vesenjak, Matej
    Borovinsek, Matej
    Duarte, Isabel
    Higa, Yoshikazu
    Shimojima, Ken
    Ren, Zoran
    ADVANCED ENGINEERING MATERIALS, 2018, 20 (08)
  • [43] Early Compressive Deformation of Closed-Cell Aluminum Foam Based on a Three-Dimensional Realistic Structure
    Wan, Xiong
    Zhu, Kai
    Xu, Yanjin
    Han, Baoshuai
    Jing, Tao
    MATERIALS, 2019, 12 (11):
  • [44] Meso-modeling of Closed-Cell Aluminum Foam Under Compression Loading
    Kurniati, Eka Oktavia
    Dirgantara, Tatacipta
    Gunawan, Leonardo
    Jusuf, Annisa
    ADVANCES IN LIGHTWEIGHT MATERIALS AND STRUCTURES, ACALMS 2020, 2020, 8 : 3 - 17
  • [45] Research on Dynamic Compression-Shear Behavior of Closed-Cell Aluminum Foam
    Lu, Jiangren
    Zhang, Jian
    Sun, Xinli
    Cai, Xinghui
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 1648 - +
  • [46] Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
    Strek, Anna M.
    Dudzik, Marek
    Machniewicz, Tomasz
    MATERIALS, 2022, 15 (03)
  • [47] Experimental and Numerical Study of Compressive Deformation Behavior of Closed-Cell Aluminum Foam
    Verma, K. S.
    Muchhala, D.
    Panthi, S.
    Mondal, D. P.
    STRENGTH OF MATERIALS, 2020, 52 (03) : 451 - 457
  • [48] Numerical analysis of compressive deformation for random closed-cell Al foam model
    Xia, Yinzheng
    Shi, Jianchao
    Mu, Yongliang
    MATERIALS RESEARCH EXPRESS, 2022, 9 (10)
  • [49] Experimental and Numerical Study of Compressive Deformation Behavior of Closed-Cell Aluminum Foam
    K. S. Verma
    D. Muchhala
    S. Panthi
    D. P. Mondal
    Strength of Materials, 2020, 52 : 451 - 457
  • [50] Friction Investigation of Closed-Cell Aluminium Foam during Radial-Constrained Test
    Kertesz, Jozsef
    Kovacs, Tuende Anna
    MATERIALS, 2024, 17 (13)