A Hybrid Channel-Communication-Enabled CNN-LSTM Model for Electricity Load Forecasting

被引:11
|
作者
Saeed, Faisal [1 ]
Paul, Anand [1 ]
Seo, Hyuncheol [2 ]
机构
[1] Kyungpook Natl Univ, Dept Comp Sci & Engn, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, Sch Architectural Civil Environm & Energy Engn, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
cross-channel communication; Convolutional Neural Networks; LSTM; electricity; load; forecasting; SMART GRIDS;
D O I
10.3390/en15062263
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Smart grids provide a unique platform to the participants of energy markets to tweak their offerings based on demand-side management. Responding quickly to the needs of the market can help to improve the reliability of the system, as well as the cost of capital investments. Electric load forecasting is important because it is used to make and run decisions about the power grid. However, people use electricity in nonlinear ways, which makes the electric load profile a complicated signal. Even though there has been a lot of research done in this field, an accurate forecasting model is still needed. In this regard, this article proposed a hybrid cross-channel-communication (C3)-enabled CNN-LSTM model for accurate load forecasting which helps decision making in smart grids. The proposed model is the combination of three different models, i.e., a C3 block to enable channel communication of a CNN (convolutional neural networks) model, two convolutional layers to extract the features and an LSTM (long short-term memory network) model for forecasting. In the proposed hybrid model, Leaky ReLu (rectified linear unit) was used as activation function instead of sigmoid. The channel communication in CNN model makes the proposed model very light and efficient. Extensive experimentation was done on electricity load data. The results show the model's high efficiency. The proposed model shows 98.3% accuracy and 0.4560 MAPE error.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A hybrid CNN-LSTM model for pre-miRNA classification
    Tasdelen, Abdulkadir
    Sen, Baha
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] A Study on Water Quality Prediction by a Hybrid Dual Channel CNN-LSTM Model with Attention Mechanism
    Liu, Yibei
    Liu, Peishun
    Wang, Xuefang
    Zhang, Xueqing
    Qin, Zifei
    INTERNATIONAL CONFERENCE ON SMART TRANSPORTATION AND CITY ENGINEERING 2021, 2021, 12050
  • [43] COVID-19 Pandemic Forecasting Using CNN-LSTM: A Hybrid Approach
    Zain, Zuhaira M.
    Alturki, Nazik M.
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2021, 2021
  • [44] Forecasting Land-Use and Land-Cover Change Using Hybrid CNN-LSTM Model
    Varma, Bhavesh
    Naik, Nitesh
    Chandrasekaran, K.
    Venkatesan, M.
    Rajan, Jeny
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [45] District heater load forecasting based on machine learning and parallel CNN-LSTM attention
    Chung, Won Hee
    Gu, Yeong Hyeon
    Yoo, Seong Joon
    ENERGY, 2022, 246
  • [46] Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model
    Shang, Chuan
    Gao, Junwei
    Liu, Huabo
    Liu, Fuzheng
    IEEE ACCESS, 2021, 9 : 50344 - 50357
  • [47] A parsimonious setup for streamflow forecasting using CNN-LSTM
    Pokharel, Sudan
    Roy, Tirthankar
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (11) : 2751 - 2761
  • [48] A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting
    Cheng, Zizhen
    Wang, Li
    Yang, Yumeng
    ENERGIES, 2023, 16 (07)
  • [49] Hybrid CNN-LSTM for Predicting Diabetes: A Review
    Soltanizadeh, Soroush
    Naghibi, Seyedeh Somayeh
    CURRENT DIABETES REVIEWS, 2024, 20 (07) : 77 - 84
  • [50] A Hybrid CNN-LSTM Approach for Sentiment Analysis
    Ramirez-Alcocer, Ulises Manuel
    Tello-Leal, Edgar
    Hernandez-Resendiz, Jaciel David
    Romero, Gerardo
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 2, CIS 2023, 2024, 869 : 425 - 437