2G HTS wires made on 30μm thick Hastelloy substrate

被引:82
|
作者
Sundaram, A. [1 ]
Zhang, Y. [1 ]
Knoll, A. R. [1 ]
Abraimov, D. [2 ]
Brownsey, P. [1 ]
Kasahara, M. [1 ]
Carota, G. M. [1 ]
Nakasaki, R. [1 ]
Cameron, J. B. [1 ]
Schwab, G. [1 ]
Hope, L. V. [1 ]
Schmidt, R. M. [1 ]
Kuraseko, H. [1 ]
Fukushima, T. [1 ]
Hazelton, D. W. [1 ]
机构
[1] SuperPower Inc, 450 Duane Ave, Schenectady, NY 12304 USA
[2] Natl High Magnet Field Lab, 2301 E Paul Dirac Dr, Tallahassee, FL 32310 USA
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2016年 / 29卷 / 10期
基金
美国国家科学基金会;
关键词
2G HTS; thinner substrate; 30 mu m Hastelloy C726; accelerator magnets; high current density; in-field performance; REBCO;
D O I
10.1088/0953-2048/29/10/104007
中图分类号
O59 [应用物理学];
学科分类号
摘要
REBCO (RE = rare earth) based high temperature superconducting (HTS) wires are now being utilized for the development of electric and electromagnetic devices for various industrial, scientific and medical applications. In the last several years, the increasing efforts in using the so-called second generation (2G) HTS wires for some of the applications require a further increase in their engineering current density (J(e)). The applications are those typically related to high magnetic fields where the higher J(e) of a REBCO wire, in addition to its higher irreversibility fields and higher mechanical strength, is already a major advantage over other superconducting wires. An effective way to increase the J(e) is to decrease the total thickness of a wire, for which using a thinner substrate becomes an obvious and attractive approach. By using our IBAD-MOCVD (ion beam assisted deposition-metal organic chemical vapor deposition) technology we have successfully made 2G HTS wires using a Hastelloy (R) C276 substrate that is only 30 mu m in thickness. By using this thinner substrate instead of the typical 50 mu m thick substrate and with a same critical current (I-c), the J(e) of a wire can be increased by 30% to 45% depending on the copper stabilizer thickness. In this paper, we report the fabrication and characterization of the 2G HTS wires made on the 30 mu m thick Hastelloy (R) C276 substrate. It was shown that with the optimization in the processing protocol, the surface of the thinner Hastelloy (R) C276 substrate can be readily electropolished to the quality needed for the deposition of the buffer stack. Same in the architecture as that on the standard 50 mu m thick substrate, the buffer stack made on the 30 mu m thick substrate showed an in-plane texture with a Delta phi of around 6.7 degrees in the LaMnO3 cap layer. Low-temperature in-field transport measurement results suggest that the wires on the thinner substrate had achieved equivalent superconducting performance, most importantly the I-c, as those on the 50 mu m thick substrate. It is expected the 2G HTS wires made on the 30 mu m thick Hastelloy (R) C276 substrate, the thinnest and with the highest J(e) to date, will greatly benefit such applications as high field magnets and high current cables.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Residual Stresses at the Interface between Carrier Tape and YSZ Layer in Manufacture of 2G HTS Wires
    Irodova, A. V.
    Golovkova, E. A.
    Kondratiev, O. A.
    Kruglov, V. S.
    Krylov, V. E.
    Tikhomirov, S. A.
    Shavkin, S. V.
    TECHNICAL PHYSICS, 2024, 69 (02) : 262 - 270
  • [32] Plenary Talk - Progress in Production and Performance of Second Generation (2G) HTS Wires and Practical Applications
    Zhang, Yi Fei
    2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2013, : 258 - 258
  • [33] 2G HTS Coil Technology Development at SuperPower
    Song, Honghai
    Brownsey, Paul
    Zhang, Yifei
    Waterman, Justin
    Fukushima, Toru
    Hazelton, Drew
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [34] Quench detection method for 2G HTS wire
    Marchevsky, M.
    Xie, Y-Y
    Selvamanickam, V.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (03):
  • [35] Hysteresis Losses Analysis in 2G HTS Cables
    Zubko, V. V.
    Fetisov, S. S.
    Vysotsky, V. S.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
  • [36] Vapour cooled 2G HTS current leads
    Demikhov, E.
    Kostrov, E.
    Tstkhovrebov, A.
    8TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS'07), 2008, 97
  • [37] Recent Developments in 2G HTS Coil Technology
    Hazelton, Drew W.
    Selvamanickam, Venkat
    Duval, Jason M.
    Larbalestier, David C.
    Markiewicz, William Denis
    Weijers, Hubertus W.
    Holtz, Ronald L.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) : 2218 - 2222
  • [38] 2G HTS Magnet With Smart Insulation Method
    Jo, Young-Sik
    Kim, Hyung-Wook
    Kim, Seog-Whan
    Kim, Doohun
    Ko, Rock-Kil
    Ha, Dong-Woo
    Park, Heui Joo
    Kim, Ho Min
    Ahn, Dong-Gyun
    Hong, Jung-Pyo
    Hur, Jin
    Kim, Seok-Beom
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (03) : 1 - 4
  • [39] Comparison of Overcurrent Responses of 2G HTS Tapes
    Czerwinski, Dariusz
    Jaroszynski, Leszek
    Majka, Michal
    Kozak, Janusz
    Charmas, Barbara
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
  • [40] Progress on MOD/RABiTS™ 2G HTS wire
    Rupich, MW
    Zhang, W
    Li, X
    Kodenkandath, T
    Verebelyi, DT
    Schoop, U
    Thieme, C
    Teplitsky, M
    Lynch, J
    Nguyen, N
    Siegal, E
    Scudiere, J
    Maroni, V
    Venkataraman, K
    Miller, D
    Holesinger, TG
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 412 : 877 - 884