The influence of nonlinear air drag on microbeam response for noncontact atomic force microscopy

被引:0
|
作者
Gottlieb, O. [1 ]
Hoffman, A.
Wu, W. [1 ]
Maimon, R.
Edrei, R.
Shavit, A. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Mech Engn, IL-32000 Haifa, Israel
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper we formulate and analyze a continuum model for the vibration of a noncontacting atomic force microscope (AFM) microbeam in air that consistently incorporates nonlinear geometric and inertia effects, localized atomic interaction, viscoelastic damping and quadratic drag. We investigate a controlled set of experiments that include both free vibration decay of a large Silicon beam and forced vibration response of an AFM Silicon microbeam mapping a Silicon sample for various initial interaction distances. Nonlinear frequency and damping backbone curves are obtained from free vibration decay data and equivalent damping ratios are deduced from forced vibration frequency response. Estimation of the system linear viscoelastic parameters and nonlinear drag parameters is enabled by comparison of the experimental backbone curves with those of a nonlinear modal dynamical system deduced from the continuum model. The calibration results without sample interaction include both a slight softening effect for small amplitude response due to nonlinear inertia and viscoelastic damping and a hardening effect for large amplitude response governed by nonlinear geometric effects and drag. Validation of the nonlinear model is enabled by comparison with the measured forced vibration AFM frequency response below the dynamic jump-to-contact threshold.
引用
收藏
页码:975 / 983
页数:9
相关论文
共 50 条
  • [31] A simple model of molecular imaging with noncontact atomic force microscopy
    Moll, Nikolaj
    Gross, Leo
    Mohn, Fabian
    Curioni, Alessandro
    Meyer, Gerhard
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [32] Stable operation mode for dynamic noncontact atomic force microscopy
    Ueyama, H.
    Sugawara, Y.
    Morita, S.
    Applied Physics A: Materials Science and Processing, 1998, 66 (SUPPL. 1):
  • [33] New method for noncontact atomic force microscopy image simulations
    Sasaki, N
    Tsukada, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1999, 38 (1A): : 192 - 194
  • [34] Ubiquitous mechanisms of energy dissipation in noncontact atomic force microscopy
    Ghasemi, S. Alireza
    Goedecker, Stefan
    Baratoff, Alexis
    Lenosky, Thomas
    Meyer, Ernst
    Hug, Hans J.
    PHYSICAL REVIEW LETTERS, 2008, 100 (23)
  • [35] Stable operation mode for dynamic noncontact atomic force microscopy
    Ueyama, H
    Sugawara, Y
    Morita, S
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S295 - S297
  • [36] Effect of microscopic nonconservative process on noncontact atomic force microscopy
    Sasaki, N
    Tsukada, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2000, 39 (12B): : L1334 - L1337
  • [37] Surface structure investigations using noncontact atomic force microscopy
    Kolodziej, J. J.
    Such, B.
    Goryl, M.
    Krok, F.
    Piatkowski, P.
    Szymonski, M.
    APPLIED SURFACE SCIENCE, 2006, 252 (21) : 7614 - 7623
  • [38] Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy
    Gross, Leo
    Mohn, Fabian
    Liljeroth, Peter
    Repp, Jascha
    Giessibl, Franz J.
    Meyer, Gerhard
    SCIENCE, 2009, 324 (5933) : 1428 - 1431
  • [40] Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy
    Martin, M
    Roschier, L
    Hakonen, P
    Parts, U
    Paalanen, M
    Schleicher, B
    Kauppinen, EI
    APPLIED PHYSICS LETTERS, 1998, 73 (11) : 1505 - 1507