Atiyah Classes of Lie Bialgebras

被引:0
|
作者
Hong, Wei [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Hubei, Peoples R China
关键词
Atiyah class; Lie bialgebras; Lie algebra pair; ROZANSKY-WITTEN INVARIANTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Atiyah class was originally introduced by M. F. Atiyah. It has many developments in recent years. One important case is the Atiyah classes of Lie algebra pairs. In this paper, we study the Atiyah class of the Lie algebra pair associated with a Lie bialgebra (g, g*) . A simple description of the Atiyah class and the first scalar Atiyah class is given by the Lie algebra structures on g and g* . As an application, the Atiyah classes for some special cases are investigated.
引用
收藏
页码:263 / 275
页数:13
相关论文
共 50 条
  • [31] Lie bialgebras arising from alternative and Jordan bialgebras
    Goncharov, M. E.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (02) : 215 - 228
  • [32] On Lie 2-bialgebras
    Qiao Yu
    Zhao Jia
    CommunicationsinMathematicalResearch, 2018, 34 (01) : 54 - 64
  • [33] 3-LIE BIALGEBRAS
    白瑞蒲
    程宇
    李佳倩
    孟伟
    Acta Mathematica Scientia, 2014, 34 (02) : 513 - 522
  • [34] Braided-Lie bialgebras
    Majid, S
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) : 329 - 356
  • [35] Quantization of Lie bialgebras revisited
    Pavol Ševera
    Selecta Mathematica, 2016, 22 : 1563 - 1581
  • [36] On Quantization Functors of Lie Bialgebras
    B. Enriquez
    Acta Applicandae Mathematica, 2002, 73 : 133 - 140
  • [37] On Quantizable Odd Lie Bialgebras
    Anton Khoroshkin
    Sergei Merkulov
    Thomas Willwacher
    Letters in Mathematical Physics, 2016, 106 : 1199 - 1215
  • [38] Hamiltonian type lie bialgebras
    Xin, Bin
    Song, Guang-ai
    Su, Yu-cai
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1267 - 1279
  • [39] n-Lie bialgebras
    Bai, Ruipu
    Guo, Weiwei
    Lin, Lixin
    Zhang, Yan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 382 - 397
  • [40] Lie 2-Bialgebras
    Chengming Bai
    Yunhe Sheng
    Chenchang Zhu
    Communications in Mathematical Physics, 2013, 320 : 149 - 172