Comparative study for feature detectors in human activity recognition

被引:0
|
作者
Bebars, Amira Ali [1 ]
Hemayed, Elsayed E. [1 ]
机构
[1] Cairo Univ, Fac Engn, Dept Comp Engn, Cairo, Egypt
关键词
MOSIFT detector; MOSIFT descriptor; Human activity recognition; MOFAST detector; Bag of words;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper quantifies existing techniques for feature detection in human action recognition. Four different feature detection approaches are investigated using Motion SIFT descriptor, a standard bag-of-features SVM classifier with x(2) kernel. Specifically we used two popular feature detectors; Motion SIFT (MOSIFT) and Motion FAST (MOFAST) with and without Statis interest points. The system was tested on commonly used datasets; KTH and Weizmann. Based on several experiments we conclude that using MOSIFT detector with Statis interest point results in the best classification accuracy on Weizmann dataset but MOFAST without Statis points achieve the best classification accuracy on KTH dataset.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 50 条
  • [11] Study on Fast Human Activity Recognition Based on Optimized Feature Selection
    Xu, Hanyuan
    Huang, Zhibin
    Wang, Jue
    Kang, Zilu
    2017 16TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES), 2017, : 109 - 112
  • [12] A Comparative Study of descriptors and detectors in Multispectral Face Recognition
    Mamadou, Diarra
    Adou, Kablan Jerome
    Gouton, Pierre
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 209 - 214
  • [13] A novel feature map for human activity recognition
    He, Guangyu
    Luan, Xinze
    Wang, Junyi
    Wang, Xiaoting
    2017 SECOND INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE), 2017, : 216 - 219
  • [14] Unsupervised feature learning for human activity recognition
    Shi, Dianxi
    Li, Yongmou
    Ding, Bo
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2015, 37 (05): : 128 - 134
  • [15] Evaluation of Feature Selection on Human Activity Recognition
    Mazaar, Hussein
    Emary, Eid
    Onsi, Hoda
    2015 IEEE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INFORMATION SYSTEMS (ICICIS), 2015, : 591 - 599
  • [16] Sparse Feature Learning for Human Activity Recognition
    Ullah, Shan
    Kim, Deok-Hwan
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2021), 2021, : 309 - 312
  • [17] Feature Detectors for Traffic Light Recognition
    Fregin, Andreas
    Mueller, Julian
    Dietmayer, Klaus
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [18] Comparative Analysis Study of Human Activity Recognition Using Various Techniques
    Hassan, Muhammad
    Ahmad, Tasweer
    Ali, Sadaf
    17TH IEEE INTERNATIONAL MULTI TOPIC CONFERENCE 2014, 2014, : 83 - 86
  • [19] A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone
    Wang, Aiguo
    Chen, Guilin
    Yang, Jing
    Zhao, Shenghui
    Chang, Chih-Yung
    IEEE SENSORS JOURNAL, 2016, 16 (11) : 4566 - 4578
  • [20] AN ONLINE FEATURE SELECTION ARCHITECTURE FOR HUMAN ACTIVITY RECOGNITION
    Karagiannaki, Katerina
    Panousopoulou, Athanasia
    Tsakalides, Panagiotis
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2522 - 2526