Numerical modelling and parametric study of an air-cooled desiccant coated cross-flow heat exchanger

被引:30
|
作者
Liu, Lin [1 ,2 ]
Zeng, Tao [1 ]
Huang, Hongyu [1 ]
Kubota, Mitsuhiro [3 ]
Kobayashi, Noriyuki [3 ]
He, Zhaohong [1 ]
Li, Jun [3 ]
Deng, Lisheng [1 ,4 ]
Li, Xing [1 ]
Feng, Yuheng [4 ,5 ]
Yan, Kai [5 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy, Guangdong Prov Key Lab New & Renewable Energy Res, 2 Nengyuan Rd, Guangzhou 510640, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nagoya Univ, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
[4] Tongji Univ, Thermal & Environm Engn Inst, 1239 Siping Rd, Shanghai 200092, Peoples R China
[5] Shanghai Boiler Works Co Ltd, Shanghai 200245, Peoples R China
关键词
Numerical modeling; Solid dehumidification; Cross-flow heat exchanger; Desiccant coated heat exchanger; Air conditioning; PERFORMANCE; DEHUMIDIFICATION; WHEEL; MASS;
D O I
10.1016/j.applthermaleng.2020.114901
中图分类号
O414.1 [热力学];
学科分类号
摘要
Air-cooled desiccant coated cross-flow heat exchanger (DCCFHE) system provides a simple and effective approach to improve dehumidification performance by using cooling air to remove adsorption heat during adsorption process. In this study, a novel numerical model validated by experimental data was established to predict the performance of a conventional silica gel DCCFHE system. The fin efficiency, as a variable due to the release of adsorption heat, was taken into account in the model. Parametric study for various air velocity and structural parameters was conducted to reveal their effects on the dehumidification performance. Results show that the smaller process air velocity is conducive to improve dehumidification performance, but the performance increases with the increase in cooling air velocity. Compared to the operation case without cooling air, the moisture removal capacity and dehumidification coefficient of performance can obtain about 35% improvement at the cooling air velocity of 1 m/s. The results also indicate that thicker desiccant layer thickness and smaller fin pitch improve moisture removal capacity and dehumidification coefficient of performance but result in greater total pressure drop Delta P, while the performance is insensible to fin thickness and fin height. Besides, effect of heat transfer performance in dehumidification and cooling sides on dehumidification performance was also analyzed. It was found that the heat transfer performance in dehumidification side is the dominant factor affecting dehumidification performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Effect of cross-flow on the performance of air-cooled heat exchanger fans
    Stinnes, WH
    von Backström, TW
    APPLIED THERMAL ENGINEERING, 2002, 22 (12) : 1403 - 1415
  • [2] Design and numerical parametric study of a compact air-cooled heat exchanger
    Huang, Zhiwei
    Ling, Jiazhen
    Hwang, Yunho
    Aute, Vikrant
    Radermacher, Reinhard
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2017, 23 (06) : 970 - 982
  • [3] Experimental study on corrugated cross-flow air-cooled plate heat exchangers
    Kim, Minsung
    Baik, Young-Jin
    Park, Seong-Ryong
    Ra, Ho-Sang
    Lim, Hyug
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (08) : 1265 - 1272
  • [4] Numerical simulation on flow and heat transfer of fin structure in air-cooled heat exchanger
    Li, Li
    Du, Xiaoze
    Yang, Lijun
    Xu, Yan
    Yang, Yongping
    APPLIED THERMAL ENGINEERING, 2013, 59 (1-2) : 77 - 86
  • [5] Air-cooled heat exchanger inlet flow losses
    Meyer, CJ
    Kröger, DG
    APPLIED THERMAL ENGINEERING, 2001, 21 (07) : 771 - 786
  • [6] Numerical analysis of a desiccant system with cross-flow Maisotsenko cycle heat and mass exchanger
    Pandelidis, Demis
    Anisimov, Sergey
    Worek, William M.
    Drag, Pawel
    ENERGY AND BUILDINGS, 2016, 123 : 136 - 150
  • [7] Numerical investigation into the effect of cross-flow on the performance of axial flow fans in forced draught air-cooled heat exchangers
    Hotchkiss, PJ
    Meyer, CJ
    von Backström, TW
    APPLIED THERMAL ENGINEERING, 2006, 26 (2-3) : 200 - 208
  • [8] CALCULATION OF MEAN TEMPERATURE DIFFERENCE IN AIR-COOLED CROSS-FLOW HEAT-EXCHANGERS
    ROETZEL, W
    NEUBERT, J
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1979, 101 (03): : 511 - 513
  • [9] Enhancement in air-cooling through integration of desiccant coated channels with cross-flow indirect evaporative heat and mass exchanger
    Ali, Muzaffar
    Rasheed, Sabir
    Mohsin, Mohammad
    He, Suoying
    Arici, Muslum
    Li, Guiqiang
    ENERGY, 2025, 314
  • [10] The Numerical Simulation of Air-Cooled Plate-Fin Heat Exchanger
    Jiang, Xue
    Bao, Jihua
    Yu, Yan
    Gu, Mingxia
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-3, 2011, 314-316 : 1472 - 1477