Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells

被引:29
|
作者
Li, Mingyu [1 ,2 ]
Chen, Shiwu [1 ]
Zhao, Xinzhao [1 ]
Xiong, Kao [3 ]
Wang, Bo [1 ]
Shah, Usman Ali [1 ]
Gao, Liang [1 ]
Lan, Xinzheng [3 ]
Zhang, Jianbing [3 ]
Hsu, Hsien-Yi [4 ,5 ]
Tang, Jiang [1 ,3 ]
Song, Haisheng [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Wuhan Natl Lab Optoelect WNLO, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wenzhou Adv Mfg Technol Res Inst, Wenzhou, Zhejiang, Peoples R China
[3] Huazhong Univ Sci & Technol HUST, Sch Optic & Elect Informat, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[4] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong 999077, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
colloidal quantum dots; energy level matching; infrared solar cells; lead sulfide; sputtered ZnO; PERFORMANCE; PHOTOVOLTAICS; SB2SE3; FILMS;
D O I
10.1002/smll.202105495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Infrared solar cells (IRSCs) can supplement silicon or perovskite SCs to broaden the utilization of the solar spectrum. As an ideal infrared photovoltaic material, PbS colloidal quantum dots (CQDs) with tunable bandgaps can make good use of solar energy, especially the infrared region. However, as the QD size increases, the energy level shrinking and surface facet evolution makes us reconsider the matching charge extraction contacts and the QD passivation strategy. Herein, different to the traditional sol-gel ZnO layer, energy-level aligned ZnO thin film from a magnetron sputtering method is adopted for electron extraction. In addition, a modified hybrid ligand recipe is developed for the facet passivation of large size QDs. As a result, the champion IRSC delivers an open circuit voltage of 0.49 V and a power conversion efficiency (PCE) of 10.47% under AM1.5 full-spectrum illumination, and the certified PCE is over 10%. Especially the 1100 nm filtered efficiency achieves 1.23%. The obtained devices also show high storage stability. The present matched electron extraction and QD passivation strategies are expected to highly booster the IR conversion yield and promote the fast development of new conception QD optoelectronics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells
    Yang, Fan
    Xu, Yalong
    Gu, Mengfan
    Zhou, Sijie
    Wang, Yongjie
    Lu, Kunyuan
    Liu, Zeke
    Ling, Xufeng
    Zhu, Zhijie
    Chen, Junmei
    Wu, Zhiyi
    Zhang, Yannan
    Xue, Ye
    Li, Fangchao
    Yuan, Jianyu
    Ma, Wanli
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (36) : 17688 - 17697
  • [32] Charge Transport Characterization of PbS Quantum Dot Solids for High Efficiency Solar Cells
    Jeong, Young Jin
    Jang, Jihoon
    Song, Jung Hoon
    Choi, Hyekyoung
    Jeong, Sohee
    Baik, Seung Jae
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2015, 19 (03) : 272 - 276
  • [33] PbS Colloidal Quantum Dots Infrared Solar Cells: Defect Information and Passivation Strategies
    Khalaf, Gomaa Mohamed Gomaa
    Li, Mingyu
    Yan, Jun
    Zhao, Xinzhao
    Ma, Tianjun
    Hsu, Hsien-Yi
    Song, Haisheng
    SMALL SCIENCE, 2023, 3 (11):
  • [34] Hole transport layer selection toward efficient colloidal PbS quantum dot solar cells
    Yang, Gang
    Zhu, Yongsheng
    Huang, Jinshu
    Xu, Xiumei
    Cui, Shaobo
    Lu, Zhiwen
    OPTICS EXPRESS, 2019, 27 (20): : A1338 - A1349
  • [35] Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths
    Fukuda, Takeshi
    Takahashi, Akihiro
    Wang, Haibin
    Takahira, Kazuya
    Kubo, Takaya
    Segawa, Hiroshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (03)
  • [36] Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells
    Gao W.-H.
    Zhai G.-M.
    Zhang C.-F.
    Shao Z.-M.
    Zheng L.-L.
    Zhang Y.
    Li X.-M.
    Xu B.-S.
    Faguang Xuebao/Chinese Journal of Luminescence, 2019, 40 (02): : 215 - 223
  • [37] PbS/CdS heterojunction quantum dot solar cells
    Dagher, Sawsan
    Haik, Yousef
    Tit, Nacir
    Ayesh, Ahmad
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (04) : 3328 - 3340
  • [38] PbS/CdS heterojunction quantum dot solar cells
    Sawsan Dagher
    Yousef Haik
    Nacir Tit
    Ahmad Ayesh
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 3328 - 3340
  • [39] PbS Colloidal Quantum-Dot-Sensitized Inorganic-Organic Hybrid Solar Cells with Radial-Directional Charge Transport
    Kim, Sungwoo
    Heo, Jin Hyuck
    Noh, Jun Hong
    Kim, Sang-Wook
    Im, Sang Hyuk
    Seok, Sang Il
    CHEMPHYSCHEM, 2014, 15 (06) : 1024 - 1027
  • [40] Charge dynamics at heterojunctions for PbS/ZnO colloidal quantum dot solar cells probed with time-resolved surface photovoltage spectroscopy
    Spencer, B. F.
    Leontiadou, M. A.
    Clark, P. C. J.
    Williamson, A. I.
    Silly, M. G.
    Sirotti, F.
    Fairclough, S. M.
    Tsang, S. C. E.
    Neo, D. C. J.
    Assender, H. E.
    Watt, A. A. R.
    Flavell, W. R.
    APPLIED PHYSICS LETTERS, 2016, 108 (09)