Plasma-assisted synthesis of Ag nanoparticles immobilized in mesoporous cellular foams and their catalytic properties for 4-nitrophenol reduction

被引:33
|
作者
Gao, Jie [1 ,2 ]
Xu, Jian [3 ]
Wen, Shixian [1 ,2 ]
Hu, Jun [1 ,2 ]
Liu, Honglai [1 ,2 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China
[3] Shanghai Inst Measurement & Testing Technol, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen plasma; Ag nanoparticles; Catalytic activity; Reduction of 4-nitrophenol; MCF support; SILVER NANOPARTICLES; SURFACE MODIFICATION; SODIUM-BOROHYDRIDE; PLATINUM; GOLD; QUANTIFICATION; SPECTROSCOPY; HYDROLYSIS; ADSORPTION; GENERATION;
D O I
10.1016/j.micromeso.2015.01.025
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Silver nanoparticle is an important catalyst for many chemical reactions and usually demands complex synthesis technology. In this work, a convenient and efficient plasma-assisted synthesis method was proposed to synthesize a new type of composite catalyst with Ag nanoparticles immobilized in 3D mesoporous cellular foams (MCFs) of silica. The plasma treatment under O-2 atmosphere provided more activated silanol groups on the surface of MCF for the immobilization of Ag nanoparticles. The properties of immobilized Ag nanoparticles, such as smaller average size, higher loading, and better dispersion state greatly improved the reaction rate of the catalytic reduction of 4-nitrophenol (4-NP). Among them, with an average size of 6.0 nm and 2.6 wt% immobilized Ag nanoparticles, the catalyst MCF-100-Ag-0.01 showed the best catalytic activity for the reduction of 4-NP, that the apparent reduction rate constant was as large as 2.66 x 10(-2) s(-1), and the turnover frequency coefficient was as extremely high as 8.97 x 10(18) molecules g(-1) s(-1). The MCF-n-Ag-m composites could be expected as attractive catalysts for many other catalytic reactions. More importantly, this plasma-assisted synthesis approach could be a convenient way for the synthesis of highly active catalysts by immobilizing various types of metal nanoparticles in porous materials. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条
  • [31] Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol
    Bingwa, Ndzondelelo
    Meijboom, Reinout
    Journal of Molecular Catalysis A: Chemical, 2015, 396 : 1 - 7
  • [32] Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles
    Gu, Sasa
    Wunder, Stefanie
    Lu, Yan
    Ballauff, Matthias
    Fenger, Robert
    Rademann, Klaus
    Jaquet, Baptiste
    Zaccone, Alessio
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (32): : 18618 - 18625
  • [33] Carbon Supported Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol
    Rodriguez Molina, Hugo
    Santos Munoz, Jose Luis
    Dominguez Leal, Maria Isabel
    Reina, Tomas Ramirez
    Ivanova, Svetlana
    Centeno Gallego, Miguel Ngel
    Antonio Odriozola, Jose
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [34] Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol
    Tian, Ye
    Cao, Yan-Yan
    Pang, Fu
    Chen, Gui-qiang
    Zhang, Xiao
    RSC ADVANCES, 2014, 4 (81) : 43204 - 43211
  • [35] Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol
    Bingwa, Ndzondelelo
    Meijboom, Reinout
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 396 : 1 - 7
  • [36] Biosynthesis of Au and Ag-Au bimetallic nanoparticles by pedicellamide for catalytic reduction of 4-nitrophenol
    Tamuly, Chandan
    Hazarika, Moushumi
    Bordoloi, Manobjyoti
    Journal of Bionanoscience, 2015, 9 (06): : 460 - 464
  • [37] Synthesis of Bimetallic Gold-Silver (Au-Ag) Nanoparticles for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol
    Berahim, Nurafaliana
    Basirun, Wan Jefrey
    Leo, Bey Fen
    Johan, Mohd Rafie
    CATALYSTS, 2018, 8 (10)
  • [38] Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol
    Zhao Gao
    Rongxin Su
    Renliang Huang
    Wei Qi
    Zhimin He
    Nanoscale Research Letters, 9
  • [39] Strategic Green Synthesis, Characterization and Catalytic Application to 4-Nitrophenol Reduction of Palladium Nanoparticles
    Gopalakrishnan, R.
    Loganathan, B.
    Dinesh, S.
    Raghu, K.
    JOURNAL OF CLUSTER SCIENCE, 2017, 28 (04) : 2123 - 2131
  • [40] Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction
    Saha, Sandip
    Pal, Anjali
    Kundu, Subrata
    Basu, Soumen
    Pal, Tarasankar
    LANGMUIR, 2010, 26 (04) : 2885 - 2893