POP: Person Re-Identification Post-Rank Optimisation

被引:86
|
作者
Liu, Chunxiao [1 ]
Loy, Chen Change [2 ]
Gong, Shaogang [3 ]
Wang, Guijin [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Hong Kong, Peoples R China
[3] Queen Mary Univ London, Sch EECS, London, England
关键词
D O I
10.1109/ICCV.2013.62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Owing to visual ambiguities and disparities, person reidentification methods inevitably produce suboptimal ranklist, which still requires exhaustive human eyeballing to identify the correct target from hundreds of different likelycandidates. Existing re-identification studies focus on improving the ranking performance, but rarely look into the critical problem of optimising the time-consuming and error-prone post-rank visual search at the user end. In this study, we present a novel one-shot Post-rank OPtimisation (POP) method, which allows a user to quickly refine their search by either "one-shot" or a couple of sparse negative selections during a re-identification process. We conduct systematic behavioural studies to understand user's searching behaviour and show that the proposed method allows correct re-identification to converge 2.6 times faster than the conventional exhaustive search. Importantly, through extensive evaluations we demonstrate that the method is capable of achieving significant improvement over the state-of-the-art distance metric learning based ranking models, even with just "one shot" feedback optimisation, by as much as over 30% performance improvement for rank 1 reidentification on the VIPeR and i-LIDS datasets.
引用
收藏
页码:441 / 448
页数:8
相关论文
共 50 条
  • [21] Towards Person Identification and Re-identification with Attributes
    Layne, Ryan
    Hospedales, Timothy M.
    Gong, Shaogang
    COMPUTER VISION - ECCV 2012: WORKSHOPS AND DEMONSTRATIONS, PT I, 2012, 7583 : 402 - 412
  • [22] Continuous and Unified Person Re-Identification
    Mao, Zhu
    Wang, Xiao
    Xu, Xin
    Wang, Zheng
    Lin, Chia-Wen
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1983 - 1987
  • [23] Weakly Supervised Person Re-Identification
    Meng, Jingke
    Wu, Sheng
    Zheng, Wei-Shi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 760 - 769
  • [24] Low illumination person re-identification
    Ma, Fei
    Zhu, Xiaoke
    Zhang, Xinyu
    Yang, Liang
    Zuo, Mei
    Jing, Xiao-Yuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (01) : 337 - 362
  • [25] An Improved Method for Person Re-identification
    Jiang, Han
    Yang, Xinmei
    Li, Yaobin
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING (ICGSP 2018), 2018, : 46 - 50
  • [26] Review of person re-identification techniques
    Saghafi, Mohammad Ali
    Hussain, Aini
    Zaman, Halimah Badioze
    Saad, Mohamad Hanif Md
    IET COMPUTER VISION, 2014, 8 (06) : 455 - 474
  • [27] Identity Adaptation for Person Re-Identification
    Ke, Qiuhong
    Bennamoun, Mohammed
    Rahmani, Hossein
    An, Senjian
    Sohel, Ferdous
    Boussaid, Farid
    IEEE ACCESS, 2018, 6 : 48147 - 48155
  • [28] Unsupervised Tracklet Person Re-Identification
    Li, Minxian
    Zhu, Xiatian
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1770 - 1782
  • [29] Pose Transferrable Person Re-Identification
    Liu, Jinxian
    Ni, Bingbing
    Yan, Yichao
    Zhou, Peng
    Cheng, Shuo
    Hu, Jianguo
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4099 - 4108
  • [30] Evaluating Features for Person Re-Identification
    Wang, Jiabao
    Li, Hang
    Li, Yang
    Xu, Yulong
    Miao, Zhuang
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 214 - 219