Deep Convolutional Gaussian Processes

被引:16
|
作者
Blomqvist, Kenneth [1 ,2 ]
Kaski, Samuel [1 ,2 ]
Heinonen, Markus [1 ,2 ]
机构
[1] Aalto Univ, Espoo, Finland
[2] Helsinki Inst Informat Technol HIIT, Espoo, Finland
关键词
Gaussian processes; Convolutions; Variational inference;
D O I
10.1007/978-3-030-46147-8_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose deep convolutional Gaussian processes, a deep Gaussian process architecture with convolutional structure. The model is a principled Bayesian framework for detecting hierarchical combinations of local features for image classification. We demonstrate greatly improved image classification performance compared to current convolutional Gaussian process approaches on the MNIST and CIFAR-10 datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy by over 10% points.
引用
收藏
页码:582 / 597
页数:16
相关论文
共 50 条
  • [31] Random Feature Expansions for Deep Gaussian Processes
    Cutajar, Kurt
    Bonilla, Edwin, V
    Michiardi, Pietro
    Filippone, Maurizio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [32] Deep state-space Gaussian processes
    Zhao, Zheng
    Emzir, Muhammad
    Sarkka, Simo
    STATISTICS AND COMPUTING, 2021, 31 (06)
  • [33] Stochastic Deep Gaussian Processes over Graphs
    Li, Naiqi
    Li, Wenjie
    Sun, Jifeng
    Gao, Yinghua
    Jiang, Yong
    Xia, Shu-Tao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [34] Bayesian Uncertainty Estimation in Landmark Localization Using Convolutional Gaussian Processes
    Schobs, Lawrence
    McDonald, Thomas M.
    Lu, Haiping
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 22 - 31
  • [35] On the use of convolutional Gaussian processes to improve the seasonal forecasting of precipitation and temperature
    Wang, Chao
    Zhang, Wei
    Villarini, Gabriele
    JOURNAL OF HYDROLOGY, 2021, 593 (593)
  • [36] Forecasting global climate drivers using Gaussian processes and convolutional autoencoders
    Donnelly, James
    Daneshkhah, Alireza
    Abolfathi, Soroush
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [37] Deep Gaussian Processes for Calibration of Computer Models (with Discussion)*
    Marmin, Sebastien
    Filippone, Maurizio
    BAYESIAN ANALYSIS, 2022, 17 (04): : 1301 - 1330
  • [38] Wide neural networks with bottlenecks are deep gaussian processes
    Agrawal, Devanshu
    Papamarkou, Theodore
    Hinkle, Jacob
    Journal of Machine Learning Research, 2020, 21
  • [39] LEARNING FROM HETEROGENEOUS DATA WITH DEEP GAUSSIAN PROCESSES
    Ajirak, Marzieh
    Preis, Heidi
    Lobel, Marci
    Djuric, Petar M.
    2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 46 - 50
  • [40] Approximate Inference Turns Deep Networks into Gaussian Processes
    Khan, Mohammad Emtiyaz
    Immer, Alexander
    Abedi, Ehsan
    Korzepa, Maciej
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32