Evolution Law of Gas Discharge of Carbon Monoxide in Mining Extra-Thick Coal Seam of Datong Mining Area

被引:2
|
作者
Ma, Zhanyuan [1 ]
Du, Feng [2 ,3 ]
机构
[1] Jinneng Holding Grp, Datong 037000, Shanxi, Peoples R China
[2] Henan Polytech Univ, Sch Energy Sci & Engn, Jiaozuo 454000, Henan, Peoples R China
[3] Collaborat Innovat Ctr Coal Work Safety & Clean H, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
MECHANISM; PILLAR;
D O I
10.1155/2021/6026229
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In order to reveal the evolution law of gas discharge of carbon monoxide in mining an extra-thick coal seam of the Datong mining area by the numerical simulation and field monitoring test, the 8202 working face and 8309 working face in the Tongxin coal mine are chosen as the test sites. The results show that the seepage flow of carbon monoxide gas reaches 1.854x10(-8) m(3)/s in the #1 fracture after the #3 key stratum in the far field breaks in the 8202 working face, the seepage flow of carbon monoxide gas reaches 1.307x10(-7) m(3)/s in the #2 fracture, the seepage flow of carbon monoxide gas reaches 4.276x10(-7) m(3)/s in the #3 fracture, the seepage flow of carbon monoxide gas reaches 4.192x10(-7) m(3)/s in the #4 fracture, and the seepage flow of carbon monoxide gas reaches 1.623x10(-7) m(3)/s in the #5 fracture. The initial caving of the #3 key stratum in the far field occurs and collapses to the gob, when the working face in the #3-5 coal seam advances to 180 m, and the voussoir beam forms in the #3 key stratum. Besides, a shower shape was formed by the seepage flow of carbon monoxide gas, and the maximum flow in the working face reaches 4.562x10(-4) m(3)/s. When the 8309 working face advances from 521.2 m to 556.4 m, the air pressure at the working face gradually rises and reaches the maximum magnitude and then begins to decrease; when the working face advances to 556.4 m, the air pressure at the working face reaches the maximum magnitude of 91.35 kPa. The gas discharge disaster of carbon monoxide in mining the extra-thick coal seam of the Datong mining area is effectively controlled by the dynamic balance multipoint control technology. The research results can be treated as an important theoretical basis for the prevention and treatment for carbon monoxide discharge disaster in mining the extra-thick coal seam of the Datong mining area.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Prevention mechanism of rock burst in backfill mining in extra-thick coal seam with deep shaft
    Chen Y.
    Li D.
    Jiang F.
    Wang C.
    Ge D.
    Zhang L.
    Yin H.
    Zhu S.
    Li, Dong (lidong20150041@163.com), 1600, China University of Mining and Technology (37): : 969 - 976
  • [22] Case study on the mining-induced stress evolution of an extra-thick coal seam under hard roof conditions
    Li, Cong
    Xie, Heping
    Gao, Mingzhong
    Xie, Jing
    Deng, Guangdi
    He, Zhiqiang
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (09) : 3174 - 3185
  • [23] Study on underlying coal seam stress distribution and failure characteristics in slicing mining of extra-thick coal seams
    Gao J.
    Cai H.
    Lu F.
    Wang W.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2021, 49 (05): : 19 - 26
  • [24] Study on Mechanism of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam
    Wang, Songwei
    Cao, Anye
    Wang, Zhengyi
    Cao, Jinrong
    Liu, Yaoqi
    Xue, Chengchun
    Guo, Wenhao
    LITHOSPHERE, 2022, 2022 (SpecialIssue 11) : 1 - 16
  • [25] The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam
    Deng, Xuejie
    Zhang, Jixiong
    Zhou, Nan
    An, Tailong
    Guo, Shuai
    Caikuang yu Anquan Gongcheng Xuebao/Journal of Mining and Safety Engineering, 2014, 31 (06): : 857 - 862
  • [26] Study on gas migration law and extraction parameters of hard roof extra-thick coal seam
    Huo, Bingjie
    Zhang, Songtao
    Huang, Yuxuan
    Jin, Jingjue
    Li, Tianhang
    Li, Tao
    Xia, Pingchuan
    Caikuang yu Anquan Gongcheng Xuebao/Journal of Mining and Safety Engineering, 2024, 41 (05): : 1091 - 1102
  • [27] Study on Mechanism of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam
    Wang, Songwei
    Cao, Anye
    Wang, Zhengyi
    Cao, Jinrong
    Liu, Yaoqi
    Xue, Chengchun
    Guo, Wenhao
    LITHOSPHERE, 2022, 2022
  • [28] Evolution and control of overburden fracture in extra-thick coal seam mining with hard roofs: ground grouting sealing and case study
    Dai, Xianglin
    Gao, Rui
    Du, Feng
    Yu, Bin
    Meng, Xiangbin
    Tai, Yang
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (07)
  • [29] The fracturing models of hard roofs and spatiotemporal law of mining-induced stress in a top coal caving face with an extra-thick coal seam
    Zhiqiang He
    Heping Xie
    Mingzhong Gao
    Guangdi Deng
    Gaoyou Peng
    Cong Li
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7
  • [30] The fracturing models of hard roofs and spatiotemporal law of mining-induced stress in a top coal caving face with an extra-thick coal seam
    He, Zhiqiang
    Xie, Heping
    Gao, Mingzhong
    Deng, Guangdi
    Peng, Gaoyou
    Li, Cong
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2020, 7 (01)