Rogue waves on the double-periodic background in the focusing nonlinear Schrodinger equation

被引:83
|
作者
Chen, Jinbing [1 ]
Pelinovsky, Dmitry E. [2 ,3 ]
White, Robert E. [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] McMaster Univ, Dept Math, Hamilton, ON L85 4K1, Canada
[3] RAS, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
FINITE-GAP METHOD; INTEGRABLE TURBULENCE; INSTABILITY; MODULATION; AMPLITUDES;
D O I
10.1103/PhysRevE.100.052219
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we characterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on the background of such solutions. Magnification of the rogue waves is studied numerically.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Rogue waves on the periodic background for a higher-order nonlinear Schrodinger-Maxwell-Bloch system
    Chang, Jian
    Zhaqilao
    WAVE MOTION, 2024, 131
  • [42] Rogue waves on the periodic background of the Kuralay-II equation
    Zhong, Yadong
    Zhang, Yi
    WAVE MOTION, 2024, 128
  • [43] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation
    Guo, Ya-Hui
    Zuo, Da-Wei
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [44] Rogue waves for an inhomogeneous discrete nonlinear Schrodinger equation in a lattice
    Wu, Xiao-Yu
    Tian, Bo
    Du, Zhong
    Du, Xia-Xia
    MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [45] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [46] The manipulation of optical rogue waves for the nonautonomous nonlinear Schrodinger equation
    Dai, Chao-Qing
    Zhu, Hai-Ping
    CANADIAN JOURNAL OF PHYSICS, 2012, 90 (04) : 359 - 364
  • [47] Generation mechanism of rogue waves for the discrete nonlinear Schrodinger equation
    Li, Min
    Shui, Juan-Juan
    Xu, Tao
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 110 - 115
  • [48] Rogue waves of the nonlinear Schrodinger equation with even symmetric perturbations
    Ankiewicz, Adrian
    Chowdhury, Amdad
    Devine, Natasha
    Akhmediev, Nail
    JOURNAL OF OPTICS, 2013, 15 (06)
  • [49] Simple determinant representation for rogue waves of the nonlinear Schrodinger equation
    Ling, Liming
    Zhao, Li-Chen
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [50] Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrodinger equation in an inhomogeneous plasma
    Sun, Wen-Rong
    Tian, Bo
    Jiang, Yan
    Zhen, Hui-Ling
    ANNALS OF PHYSICS, 2014, 343 : 215 - 227