Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries

被引:62
|
作者
Han, Mingming [1 ]
Qin, Liping [2 ]
Liu, Zhexuan [1 ]
Zhang, Linxuan [1 ]
Li, Xinkuo [1 ]
Lu, Bingan [3 ]
Huang, Jiwu [1 ]
Liang, Shuquan [1 ,4 ]
Zhou, Jiang [1 ,4 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[2] Guangxi Univ Sci & Technol, Coll Biol & Chem Engn, Liuzhou 545006, Guangxi, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
[4] Cent South Univ, Key Lab Elect Packaging & Adv Funct Mat Hunan Pro, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Mn-based oxides; Aqueous Zn/MnO2 battery; Defect engineering; Crystal structure; Diffusion kinetics; ELECTRICAL ENERGY-STORAGE; HIGH-SURFACE-AREA; LI-ION BATTERIES; HIGH-PERFORMANCE; HIGH-CAPACITY; CATHODE MATERIAL; ELECTRODE MATERIALS; MNO2; CARBON; INTERCALATION;
D O I
10.1016/j.mtener.2020.100626
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous rechargeable batteries have been considered as promising candidates to achieve the re-quirements for the stationary energy storage system. In recent years, numerous studies have focused on aqueous rechargeable zinc batteries (ARZBs) due to their merits of low-cost, material abundance, acceptable energy density, and environmental friendliness. The fundamental advances in energy storage of batteries are largely dependent on the electrode materials. Focusing on the recent advances of ARZBs, in this review, the reaction mechanisms, electrochemical performances, and challenges about Mn-based materials for ARZBs are systematically introduced. Meanwhile, the optimization strategies for high-performance Mn-based materials with different nanostructures, morphologies, and compositions for ARZBs are discussed as well. This paper combining reviews and perspectives of Mn-based electrodes may shed light on the development of advanced aqueous zinc batteries. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Structural and morphological studies of manganese-based cathode materials for lithium ion batteries
    Michalska, M.
    Lipinska, L.
    Sikora, A.
    Ziolkowska, D.
    Korona, K. P.
    Andrzejczuk, M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 632 : 256 - 262
  • [42] Recent advances on charge storage mechanisms and optimization strategies of Mn-based cathode in zinc-manganese oxides batteries
    Luan, Jingyi
    Yuan, Hongyan
    Liu, Jie
    Zhong, Cheng
    ENERGY STORAGE MATERIALS, 2024, 66
  • [43] Failure Mechanisms and Strategies for Vanadium Oxide-Based Cathode in Aqueous Zinc Batteries
    Sinha, Rohit
    Xie, Xuesong
    Yang, Yang
    Li, Yifan
    Xue, Yuxuan
    Wang, Pengyu
    Li, Zhi
    ADVANCED ENERGY MATERIALS, 2025,
  • [44] Holistic optimization strategies for advanced aqueous zinc iodine batteries
    Xu, Junwei
    Huang, Zhongyuan
    Zhou, Haihui
    He, Guanjie
    Zhao, Yunlong
    Li, Huanxin
    ENERGY STORAGE MATERIALS, 2024, 72
  • [45] Anode optimization strategies for aqueous zinc-ion batteries
    Zhang, Yiyang
    Zheng, Xiaobo
    Wang, Nana
    Lai, Wei-Hong
    Liu, Yong
    Chou, Shu-Lei
    Liu, Hua-Kun
    Dou, Shi-Xue
    Wang, Yun-Xiao
    CHEMICAL SCIENCE, 2022, 13 (48) : 14246 - 14263
  • [46] Issues and optimization strategies of binders for aqueous zinc metal batteries
    Zhou, Miao
    Zhou, Xiaotao
    Yang, Yu
    Yin, Hong
    Lei, Yongpeng
    Liang, Shuquan
    Fang, Guozhao
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [47] Manganese-Based Materials for Magnetic Refrigeration
    de Boer, F. R.
    PROCEEDINGS OF 2ND INTERNATIONAL SYMPOSIUM ON PHYSICS AND HIGH-TECH INDUSTRY, 4TH INTERNATIONAL SYMPOSIUM ON MAGNETIC INDUSTRY, 1ST SHENYANG FORUM FOR DEVELOPMENT AND COOPERATION OF HIGH-TECH INDUSTRY IN NORTHEAST ASIA, 2009, : 43 - 43
  • [48] Manganese-based permanent magnet materials
    Keller, Thomas
    Baker, Ian
    PROGRESS IN MATERIALS SCIENCE, 2022, 124
  • [49] Manganese-based MOF interconnected carbon nanotubes as a high-performance cathode for rechargeable aqueous zinc-ion batteries
    Zhang, Jing
    Liu, Yuexin
    Wang, Tiantian
    Fu, Ning
    Yang, Zhenglong
    JOURNAL OF ENERGY STORAGE, 2024, 76
  • [50] Research Progress on Manganese Dissolution and Deposition Mechanism of Cathode Materials for Manganese-based Lithium Ion Batteries
    Li W.
    Li S.
    Geng T.
    Peng F.
    Liang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (01): : 73 - 78