Liouville theorems of subelliptic harmonic maps

被引:1
|
作者
Gao, Liu [1 ]
Lu, Lingen [2 ]
Yang, Guilin [3 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321017, Zhejiang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Subelliptic harmonic map; Liouville theorem; Vanishing-type theorem; Sub-Riemannian manifold; Totally geodesic Riemannian foliation; HARNACK INEQUALITY; UNIQUENESS; OPERATORS;
D O I
10.1007/s10455-021-09811-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss two Liouville-type theorems for subelliptic harmonic maps from sub-Riemannian manifolds to Riemannian manifolds. One is the Dirichlet version which states that two subelliptic harmonic maps from a sub-Riemannian manifold with boundary to a regular ball must be same if their restrictions on boundary are same; it is generalized to complete noncompact domains as well. The other is the vanishing-type theorem for finite L p-energy subelliptic harmonic maps on complete noncompact totally geodesic Riemannian foliations which are special sub-Riemannian manifolds.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 50 条
  • [11] Liouville type theorems for p-harmonic maps
    Moon, Dong Joo
    Liu, Huili
    Dal Jung, Seoung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 354 - 360
  • [12] LIOUVILLE TYPE THEOREMS FOR TRANSVERSALLY HARMONIC AND BIHARMONIC MAPS
    Jung, Min Joo
    Dal Jung, Seoung
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 763 - 772
  • [13] Liouville Theorems for F-Harmonic Maps and Their Applications
    Yuxin Dong
    Hezi Lin
    Guilin Yang
    Results in Mathematics, 2016, 69 : 105 - 127
  • [14] Liouville Theorems for F-Harmonic Maps and Their Applications
    Dong, Yuxin
    Lin, Hezi
    Yang, Guilin
    RESULTS IN MATHEMATICS, 2016, 69 (1-2) : 105 - 127
  • [15] Liouville theorems for harmonic maps into CAT(1) spaces
    Chen, Qun
    Wang, Jie
    MANUSCRIPTA MATHEMATICA, 2025, 176 (02)
  • [16] On subelliptic harmonic maps with potential
    Dong, Yuxin
    Luo, Han
    Yu, Weike
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (01)
  • [17] On subelliptic harmonic maps with potential
    Yuxin Dong
    Han Luo
    Weike Yu
    Annals of Global Analysis and Geometry, 2024, 65
  • [18] Uniqueness of subelliptic harmonic maps
    Zhou, ZR
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (06) : 581 - 594
  • [19] Exponentially harmonic maps, Morse index and Liouville type theorems
    Yuan-Jen Chiang
    European Journal of Mathematics, 2020, 6 : 1388 - 1402
  • [20] Gradient Estimate and Liouville Theorems for p-Harmonic Maps
    Yuxin Dong
    Hezi Lin
    The Journal of Geometric Analysis, 2021, 31 : 8318 - 8333