Spectral Synthesis for Geostationary Satellite-to-Satellite Translation

被引:13
|
作者
Vandal, Thomas J. [1 ,2 ]
McDuff, Daniel [3 ]
Wang, Weile [1 ,4 ]
Duffy, Kate [1 ,5 ]
Michaelis, Andrew [1 ]
Nemani, Ramakrishna R. [1 ]
机构
[1] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[2] Bay Area Environm Res Inst, Moffett Field, CA 94035 USA
[3] Microsoft AI, Redmond, WA 98052 USA
[4] Calif State Univ Monterey Bay, Sch Nat Sci, Marina, CA 93933 USA
[5] Northeastern Univ, Civil & Environm Engn Dept, Boston, MA 02115 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Satellites; Sensors; Image reconstruction; NASA; Monitoring; Earth; Atmospheric measurements; Geophysical image processing; neural networks (NNs); remote sensing; unsupervised learning; PRECIPITATION ESTIMATION; VARIATIONAL AUTOENCODER; NETWORKS; REFLECTANCE; WEATHER; IMAGERY;
D O I
10.1109/TGRS.2021.3088686
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Earth-observing satellites carrying multispectral sensors are widely used to monitor the physical and biological states of the atmosphere, land, and oceans. These satellites have different vantage points above the Earth and different spectral imaging bands resulting in inconsistent imagery from one to another. This presents challenges in building downstream applications. What if we could generate synthetic bands for existing satellites from the union of all domains? We tackle the problem of generating synthetic spectral imagery for multispectral sensors as an unsupervised image-to-image translation problem modeled with a variational autoencoder (VAE) and generative adversarial network (GAN) architecture. Our approach introduces a novel shared spectral reconstruction loss to constrain the high-dimensional feature space of multispectral images. Simulated experiments performed by dropping one or more spectral bands show that cross-domain reconstruction outperforms measurements obtained from a second vantage point. Our proposed approach enables the synchronization of multispectral data and provides a basis for more homogeneous remote sensing datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] RECENT DEVELOPMENTS IN SATELLITE-TO-SATELLITE TRACKING, LOW-LOW CASE
    PISACANE, VL
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (06): : 371 - 372
  • [42] Spectra of field intensity fluctuations in radio occultations on a satellite-to-satellite path
    Matyugov, S.S.
    Yakovlev, O.I.
    Anufriev, V.A.
    Radiotekhnika i Elektronika, 2001, 46 (07): : 826 - 832
  • [43] Extreme total electron content along satellite-to-satellite ray paths
    Kersley, L
    Bailey, GJ
    RADIO SCIENCE, 2005, 40 (04) : 1 - 5
  • [44] GEOSTATIONARY SATELLITE ORBITAL GEOMETRY
    YEH, LP
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1972, CO20 (02) : 252 - &
  • [45] XCP in a geostationary satellite context
    Fasson, Julien
    Hobaya, Fabrice
    Arnal, Fabrice
    2008 INTERNATIONAL WORKSHOP ON SATELLITE AND SPACE COMMUNICATIONS, CONFERENCE PROCEEDINGS, 2008, : 145 - +
  • [46] GEOSTATIONARY SATELLITE NAVIGATION SYSTEMS
    HA, TT
    ROBERTSON, RC
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1987, 23 (02) : 247 - 254
  • [47] On evolution of geostationary satellite orbits
    Kiladze, RI
    Sochilina, AS
    ORBIT DETERMINATION AND ANALYSIS, 1997, 19 (11): : 1685 - 1688
  • [48] Optimal geostationary satellite collocation
    Beigelman, Igor
    Gurfil, Pini
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 617 - 636
  • [49] Robotics for geostationary satellite servicing
    Visentin, G
    Brown, DL
    ROBOTICS AND AUTONOMOUS SYSTEMS, 1998, 23 (1-2) : 45 - 51
  • [50] Interferometric imaging of geostationary satellite
    Armstrong, J. T.
    Baines, E. K.
    Hindsley, R. B.
    Schmitt, H. R.
    Restaino, S. R.
    Jorgensen, A. M.
    Mozurkewich, D.
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS V, 2012, 8385