A Bayesian network meta-analysis for binary outcome: how to do it

被引:57
|
作者
Greco, Teresa [1 ,2 ]
Landoni, Giovanni [1 ]
Biondi-Zoccai, Giuseppe [3 ,4 ]
D'Ascenzo, Fabrizio [4 ,5 ]
Zangrillo, Alberto [1 ]
机构
[1] Ist Sci San Raffaele, Anaesthesia & Intens Care Dept, Via Olgettina 60, I-20132 Milan, Italy
[2] Univ Milan, Sect Med Stat & Biometry Giulio A Maccacaro, Dept Occupat & Environm Hlth, Milan, Italy
[3] Univ Roma La Sapienza, Dept Med Surg Sci & Biotechnol, Rome, Italy
[4] Meta Anal & Evidence Based Med Training Cardiol M, Ospedaletti, Italy
[5] Citta Salute & Sci, Dept Internal Med, Div Cardiol, Turin, Italy
关键词
anaesthetic agents; Bayesian; binary outcomes; hierarchical models; mixed treatment comparison; network meta-analysis; WinBUGS; MIXED TREATMENT COMPARISONS; ISPOR TASK-FORCE; STATISTICAL-METHODS; ECOLOGICAL BIAS; META-REGRESSION; PATIENT-LEVEL; HETEROGENEITY; INCONSISTENCY; LIKELIHOOD; PERFORMANCE;
D O I
10.1177/0962280213500185
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This study presents an overview of conceptual and practical issues of a network meta-analysis (NMA), particularly focusing on its application to randomised controlled trials with a binary outcome of interest. We start from general considerations on NMA to specifically appraise how to collect study data, structure the analytical network and specify the requirements for different models and parameter interpretations, with the ultimate goal of providing physicians and clinician-investigators a practical tool to understand pros and cons of NMA. Specifically, we outline the key steps, from the literature search to sensitivity analysis, necessary to perform a valid NMA of binomial data, exploiting Markov Chain Monte Carlo approaches. We also apply this analytical approach to a case study on the beneficial effects of volatile agents compared to total intravenous anaesthetics for surgery to further clarify the statistical details of the models, diagnostics and computations. Finally, datasets and models for the freeware WinBUGS package are presented for the anaesthetic agent example.
引用
收藏
页码:1757 / 1773
页数:17
相关论文
共 50 条
  • [31] Bayesian meta-analysis
    Millis, SR
    CLINICAL NEUROPSYCHOLOGIST, 2003, 17 (01): : 110 - 110
  • [32] How do we define normal bowel frequency from newborn to teens?: A Bayesian meta-analysis
    Munasinghe, Sachith
    Manathunga, Supun
    Hathagoda, Wathsala
    Kuruppu, Chandrani
    Ranasinghe, Priyanga
    Devanarayana, Niranga M.
    Baaleman, Desiree F.
    Benninga, Marc A.
    Rajindrajith, Shaman
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2024,
  • [33] How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis
    Ott, Manuela
    Plummer, Martyn
    Roos, Malgorzata
    STATISTICS IN MEDICINE, 2021, 40 (20) : 4505 - 4521
  • [34] Prokinetics for the treatment of functional dyspepsia: Bayesian network meta-analysis
    Yang, Young Joo
    Bang, Chang Seok
    Baik, Gwang Ho
    Park, Tae Young
    Shin, Suk Pyo
    Suk, Ki Tae
    Kim, Dong Joon
    BMC GASTROENTEROLOGY, 2017, 17
  • [35] Hierarchical Bayesian approaches for detecting inconsistency in network meta-analysis
    Zhao, Hong
    Hodges, James S.
    Ma, Haijun
    Jiang, Qi
    Carlin, Bradley P.
    STATISTICS IN MEDICINE, 2016, 35 (20) : 3524 - 3536
  • [36] Amiodarone and/or lidocaine for cardiac arrest: A Bayesian network meta-analysis
    Zhao, Hongli
    Fan, Kai
    Feng, Guilong
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2020, 38 (10): : 2185 - 2193
  • [37] Comparing biologic therapies in psoriasis: A bayesian network meta-analysis
    de Brito, Marianne
    Mahil, Satveer
    Ezejimofor, Martinsixtus
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2020, 83 (06) : AB84 - AB84
  • [38] A Bayesian network meta-analysis on the effect of inodilatory agents on mortality
    Greco, T.
    Calabro, M. G.
    Covello, R. D.
    Greco, M.
    Pasin, L.
    Morelli, A.
    Landoni, G.
    Zangrillo, A.
    BRITISH JOURNAL OF ANAESTHESIA, 2015, 114 (05) : 746 - 756
  • [39] Theory and practice of Bayesian and frequentist frameworks for network meta-analysis
    Sadeghirad, Behnam
    Foroutan, Farid
    Zoratti, Michael J.
    Busse, Jason W.
    Brignardello-Petersen, Romina
    Guyatt, Gordon
    Thabane, Lehana
    BMJ EVIDENCE-BASED MEDICINE, 2023, 28 (03) : 204 - 209
  • [40] Bayesian unanchored additive models for component network meta-analysis
    Wigle, Augustine
    Beliveau, Audrey
    STATISTICS IN MEDICINE, 2022, 41 (22) : 4444 - 4466