Raman spectroscopy of semiconductor nanostructures in optically confined microcavities

被引:0
|
作者
Trigo, M
Fainstein, A [1 ]
Jusserand, B
Thierry-Mieg, V
机构
[1] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] CNRS, FTR&D, F-92225 Bagneux, France
[3] CNRS, Microstruct & Microelect Lab, F-92225 Bagneux, France
来源
PHYSICA E | 2001年 / 11卷 / 2-3期
关键词
microcavities; semiconductor nanostructures; Raman scattering; phonons;
D O I
10.1016/S1386-9477(01)00204-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We use a novel double microcavity for double optical resonant Raman amplification. The observed four orders of magnitude Raman enhancement is exploited to study finite size effects on the phonon spectra of GaAs/AlAs MQWs. The design allows almost backscattering geometries, thus providing easy access to the excitations in-plane dispersion. The k(parallel to) dispersion of the GaAs-like optical phonons has been mapped out, showing the existence of a new type of "standing optical vibrations" in the Raman spectra. The N = 1 order standing wave displays a giant k(parallel to) dispersion and successively anticrosses with the higher order m = 5,7,9 and 11 confined phonons. The acoustic phonon spectra in the folded phonon region displays a complex series of peaks reflecting coupling effects between the two embedded MQWs. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 208
页数:4
相关论文
共 50 条
  • [1] Raman spectroscopy of phonons in optically confined semiconductor nanostructures
    Fainstein, A
    Jusserand, B
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (10) : S377 - S385
  • [2] Surface-enhanced Raman spectroscopy of semiconductor nanostructures
    Milekhin, A. G.
    Sveshnikova, L. L.
    Duda, T. A.
    Yeryukov, N. A.
    Rodyakina, E. E.
    Gutakovskii, A. K.
    Batsanov, S. A.
    Latyshev, A. V.
    Zahn, D. R. T.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 75 : 210 - 222
  • [3] Tip-enhanced Raman spectroscopy of semiconductor nanostructures
    Zhang, Zhongjian
    Dillen, David
    Brennan, Christopher J.
    De Palma, Alex
    Cossio, Gabriel
    Ghosh, Rudresh
    Banerjee, Sanjay
    Tutuc, Emanuel
    Yu, Edward T.
    NANOIMAGING AND NANOSPECTROSCOPY V, 2017, 10350
  • [4] Resonant Raman scattering in semiconductor microcavities
    Fainstein, A
    Jusserand, B
    André, R
    Thierry-Mieg, V
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1999, 215 (01): : 403 - 407
  • [5] Lasing modes in highly confined semiconductor microcavities
    Deppe, DG
    Huffaker, DL
    Deng, H
    Oh, TH
    Deng, Q
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES V, 1997, 2994 : 250 - 258
  • [6] High-Resolution Raman Spectroscopy with Optically Pumped Semiconductor Lasers
    Kiefer, W.
    Pfeufer, V.
    Vogt, P.
    SPECTROSCOPY, 2012, 27 (07) : 28 - +
  • [7] Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals
    Rolo, A. G.
    Vasilevskiy, M. I.
    JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (06) : 618 - 633
  • [8] Heterodimensionally confined carriers in III-V semiconductor nanostructures in multidimensional spectroscopy
    Kolarczik, M.
    Koulas-Simos, A.
    Herzog, B.
    Lingnau, B.
    Helmrich, S.
    Luedge, K.
    Owschimikow, N.
    Woggon, U.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [9] Optically Erasing Disorder in Semiconductor Microcavities with Dynamic Nuclear Polarization
    Liew, T. C. H.
    Savona, V.
    PHYSICAL REVIEW LETTERS, 2011, 106 (14)
  • [10] Ultrafast spectroscopy of carriers and excitons in semiconductor microcavities
    Norris, TB
    Rhee, JK
    Lai, R
    Citrin, DS
    Nishioka, M
    Arakawa, Y
    PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 1996, 33 (1-3): : 155 - 160