Knot Theory

被引:0
|
作者
Kauffman, Louis H. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, 851 South Morgan St, Chicago, IL 60607 USA
来源
关键词
CLASSICAL CONJECTURES; POLYNOMIAL INVARIANT; RESHETIKHIN-TURAEV; JONES POLYNOMIALS; QUANTUM GROUPS; 3-MANIFOLDS; LINKS; WITTEN; CALCULUS; GRAPHS;
D O I
10.1090/conm/670/13444
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is an introduction to knot theory from the point of view of combinatorial topology and the Reidemeister moves, combined with the relationships of knot polynomials such as the Jones polynomial with ideas and techniques in theoretical physics and statistical mechanics. The paper begins with a introduction to Fox coloring, quandle and Alexander polynomial. Then it discusses the Kauffman bracket model of the Jones polynomial and how this is related to Vassiliev invariants. From Vassiliev invariants the paper turns to Lie algebras as background for the construction invariants, quantum link invariants and the work of Witten using Lie algebras and functional integrals to construct new invariants of knots, links and three-manifolds and how Witten's approach is related to Vassiliev invariants.
引用
收藏
页码:3 / 62
页数:60
相关论文
共 50 条
  • [31] Knot theory with the Lorentz group
    Martins, JF
    FUNDAMENTA MATHEMATICAE, 2005, 188 : 59 - 93
  • [32] Knot theory in modern chemistry
    Horner, Kate E.
    Miller, Mark A.
    Steed, Jonathan W.
    Sutcliffe, Paul M.
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (23) : 6432 - 6448
  • [33] Recognition algorithms in knot theory
    Dynnikov, IA
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1093 - 1139
  • [34] Murphy operators in Knot Theory
    Morton, H. R.
    DIFFERENTIAL GEOMETRY AND PHYSICS, 2006, 10 : 359 - 366
  • [35] A quantum introduction to knot theory
    Murakami, Hitoshi
    PRIMES AND KNOTS, 2006, 416 : 137 - 165
  • [36] Virtual mosaic knot theory
    Ganzell, Sandy
    Henrich, Allison
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (14)
  • [37] CONVEX EMBEDDABILITY AND KNOT THEORY
    Iannella, Martina
    Marcone, Alberto
    Ros, Luca motto
    Weinstein, Vadim
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [38] Introduction to disoriented knot theory
    Altintas, Ismet
    OPEN MATHEMATICS, 2018, 16 : 346 - 357
  • [39] Classical roots of knot theory
    George Washington Univ, Washington, United States
    Chaos Solitons Fractals, 4-5 (531-545):
  • [40] Gauge theory and knot homologies
    Gukov, Sergei
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2007, 55 (5-7): : 473 - 490