Some revisited results about composition operators on Hardy spaces

被引:22
|
作者
Lefevre, Pascal [1 ]
Li, Daniel [1 ]
Queffelec, Herve [2 ]
Rodriguez-Piazza, Luis [3 ]
机构
[1] Univ Lille Nord France, Federat CNRS Nord Pas de Calais FR 2956, Lab Math Lens EA 2462, UArtois,Fac Sci Jean Perrin, F-62300 Lens, France
[2] Univ Lille Nord France, USTL, Lab Paul Painleve UMR CNRS 8524, F-59655 Villeneuve Dascq, France
[3] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
关键词
Blaschke product; Carleson function; Carleson measure; composition operator; Hardy-Orlicz space; Nevanlinna counting function; Schatten classes; COMPACT COMPOSITION OPERATORS;
D O I
10.4171/RMI/666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the one hand, we generalize some results known for composition operators on Hardy spaces to the case of Hardy-Orlicz spaces H-Psi: construction of a "slow" Blaschke product giving a non-compact composition operator on H-Psi and yet "nowhere differentiable"; construction of a surjective symbol whose associated composition operator is compact on H-Psi and is, moreover, in all Schatten classes S-p(H-2), p > 0. On the other hand, we revisit the classical case of composition operators on H-2, giving first a new, and simpler, characterization of composition operators with closed range, and then showing directly the equivalence of the two characterizations of membership in Schatten classes of Luecking, and Luecking-Zhu.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 50 条