Infinite simple zeropotent paramedial groupoids

被引:1
|
作者
Cho, JR [1 ]
Kepka, T
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Charles Univ, Dept Algebra, Prague 18600 8, Czech Republic
关键词
grupoid; simple; paramedial;
D O I
10.1023/B:CMAJ.0000024521.03909.d8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is an immediate continuation of [3], where one can find various notation and other useful details. In the present part, a full classification of infinite simple zeropotent paramedial groupoids is given.
引用
收藏
页码:769 / 775
页数:7
相关论文
共 50 条
  • [41] Transcendence of infinite sums of simple functions
    Weatherby, Chester
    ACTA ARITHMETICA, 2010, 142 (01) : 85 - 102
  • [43] Ample Groupoids, Topological Full groups, Algebraic K-theory Spectra and Infinite Loop Spaces
    Li, Xin
    FORUM OF MATHEMATICS PI, 2025, 13
  • [44] A SIMPLE CONSTRAINT QUALIFICATION IN INFINITE DIMENSIONAL PROGRAMMING
    BORWEIN, JM
    WOLKOWICZ, H
    MATHEMATICAL PROGRAMMING, 1986, 35 (01) : 83 - 96
  • [45] On a Sufficient Condition when an Infinite Group Is not Simple
    Shlepkin, Aleksei A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (01): : 103 - 107
  • [46] ALGEBRAIC TORSION FOR INFINITE SIMPLE HOMOTOPY TYPES
    FARRELL, FT
    WAGONER, JB
    COMMENTARII MATHEMATICI HELVETICI, 1972, 47 (04) : 502 - 513
  • [47] Infinite All-Layers Simple Foldability
    Hugo A. Akitaya
    Cordelia Avery
    Joseph Bergeron
    Erik D. Demaine
    Justin Kopinsky
    Jason S. Ku
    Graphs and Combinatorics, 2020, 36 : 231 - 244
  • [48] On a Class of Infinite Simple Lie Conformal Algebras
    Hong, Yanyong
    Pan, Yang
    Chen, Haibo
    ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (04) : 801 - 822
  • [49] On Infinite Separations Between Simple and Optimal Mechanisms
    Psomas, Alexandros
    Schvartzman, Ariel
    Weinberg, S. Matthew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [50] A class of infinite dimensional simple Lie algebras
    Zhao, KM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 71 - 84