METRIC FORMULAE FOR NONCONVEX HAMILTON-JACOBI EQUATIONS AND APPLICATIONS

被引:0
|
作者
Marigonda, A. [1 ]
Siconolfi, A. [2 ]
机构
[1] Univ Verona, Dip Informat, I-37134 Verona, Italy
[2] Univ Roma La Sapienza, Dip Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
VISCOSITY SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hamilton-Jacobi equation H(x, Du) = 0 in R(n), with H not enjoying any convexity properties in the second variable. Our aim is to establish existence and nonexistence theorems for viscosity solutions of associated Dirichlet problems, find representation formulae and prove comparison principles. Our analysis is based on the introduction of a metric intrinsically related to the 0-sublevels of the Hamiltonian, given by an inf-sup game theoretic formula. We also study the case where the equation is critical; i.e., H(x, Du) = -epsilon does not admit any viscosity subsolution, for epsilon > 0.
引用
收藏
页码:691 / 724
页数:34
相关论文
共 50 条
  • [21] Stochastic homogenization of Hamilton-Jacobi equations and some applications
    Souganidis, PE
    ASYMPTOTIC ANALYSIS, 1999, 20 (01) : 1 - 11
  • [22] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [23] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [24] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [25] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [26] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [27] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [29] Stochastic homogenization of nonconvex viscous Hamilton-Jacobi equations in one space dimension
    Davini, Andrea
    Kosygina, Elena
    Yilmaz, Atilla
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (7-8) : 698 - 734
  • [30] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304