TURAN GRAPHS AND THE NUMBER OF COLORINGS

被引:5
|
作者
Norine, Serguei [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
chromatic polynomial; Turan graph; number of colorings;
D O I
10.1137/100799745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an old problem of Linial and Wilf to determine the structure of graphs which allows the maximum number of q-colorings among graphs with n vertices and m edges. We show that if r divides q, then for all sufficiently large n the Turan graph T-r(n) has more q-colorings than any other graph with the same number of vertices and edges. This partially confirms a conjecture of Lazebnik. Our proof builds on methods of Loh, Pikhurko, and Sudakov, which reduces the problem to a quadratic program.
引用
收藏
页码:260 / 266
页数:7
相关论文
共 50 条
  • [21] The number of Gallai k-colorings of complete graphs
    Bastos, Josefran de Oliveira
    Benevides, Fabricio Siqueira
    Han, Jie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 1 - 13
  • [22] Turan Number of Disjoint Triangles in 4-Partite Graphs
    Han, Jie
    Zhao, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [23] UPPER ORIENTED CHROMATIC NUMBER OF UNDIRECTED GRAPHS AND ORIENTED COLORINGS OF PRODUCT GRAPHS
    Sopena, Eric
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 517 - 533
  • [24] THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS
    Kierstead, Hal
    Mohar, Bojan
    Spacapan, Simon
    Yang, Daqing
    Zhu, Xuding
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1548 - 1560
  • [25] Injective edge colorings of degenerate graphs and the oriented chromatic number
    Bradshaw, Peter
    Clow, Alexander
    Xu, Jingwei
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 127
  • [26] Singular Turan Numbers and Worm-Colorings
    Gerbner, Daniel
    Patkos, Balazs
    Vizer, Mate
    Tuza, Zsolt
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1061 - 1074
  • [27] On the Number of Heterochromatic Trees in Nice and Beautiful Colorings of Complete Graphs
    Montellano-Ballesteros, Juan Jose
    Rivera-Campo, Eduardo
    Strausz, Ricardo
    GRAPHS AND COMBINATORICS, 2022, 38 (01)
  • [28] The maximum number of colorings of graphs of given order and size: A survey
    Lazebnik, Felix
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2783 - 2791
  • [29] On the Number of Heterochromatic Trees in Nice and Beautiful Colorings of Complete Graphs
    Juan José Montellano-Ballesteros
    Eduardo Rivera-Campo
    Ricardo Strausz
    Graphs and Combinatorics, 2022, 38
  • [30] On the number of maximal independent sets in minimum colorings of split graphs
    Bresar, Bostjan
    Movarraei, Nazanin
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 352 - 356