chromatic polynomial;
Turan graph;
number of colorings;
D O I:
10.1137/100799745
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider an old problem of Linial and Wilf to determine the structure of graphs which allows the maximum number of q-colorings among graphs with n vertices and m edges. We show that if r divides q, then for all sufficiently large n the Turan graph T-r(n) has more q-colorings than any other graph with the same number of vertices and edges. This partially confirms a conjecture of Lazebnik. Our proof builds on methods of Loh, Pikhurko, and Sudakov, which reduces the problem to a quadratic program.
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
Hoppen, Carlos
Kohayakawa, Yoshiharu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
Kohayakawa, Yoshiharu
Lefmann, Hanno
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Chemnitz, Fak Informat, D-09107 Chemnitz, GermanyUniv Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
机构:
Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
Alon, Noga
Yuster, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Haifa, Dept Math, IL-31905 Haifa, IsraelTel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel